domingo, 30 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Terraformar Marte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTROFÍSICA

La atmósfera de Marte lograría un nuevo equilibrio similar al de la Tierra

La NASA propone un campo magnético para que Marte recupere sus mares

 

 

Imágenes de la superficie de Marte NASA/JPL-CALTECH/UNIV. DE ARIZONA

Científicos de la NASA han propuesto, nada menos, que el despliegue de un escudo magnético que podría mejorar la atmósfera de Marte y facilitar las misiones tripuladas allí en el futuro.

Durante el Planetary Science Vision 2050 Workshop, organizado esta semana por la División de Ciencia Planetaria de la NASA, su director, Jim Green explicó esta ambiciosa idea durante una charla sobre El futuro medio ambiente marciano para la ciencia y la exploración.

Resultado de imagen de Marte tuvo un campo magnético
              Así era Marte cuando tenía un océano y quieren recuperarlo

El consenso científico actual es que, como la Tierra, Marte alguna vez tuvo un campo magnético que protegía su atmósfera. Hace aproximadamente 4,2 mil millones de años, el campo magnético de este planeta desapareció repentinamente, lo que causó que la atmósfera de Marte se perdiera lentamente en el espacio. En 500 millones de años, Marte pasó de ser un ambiente más cálido y húmedo al frío e inhabitable lugar que hoy conocemos.

Para superar el problema que esto representa para la colonización de Marte, Green y un panel de investigadores sugieren que mediante la colocación de un escudo de dipolo magnético en el punto Mars L1 Lagrange, se podría formar una magnetosfera artificial que abarcaría todo el planeta, protegiéndolo así del viento solar y la radiación.

Imagen relacionada

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L – acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5 son máximos.

En su exposición, reconocieron que la idea podría sonar un poco “fantástica”. Sin embargo, enfatizaron cómo la nueva investigación en magnetosferas en miniatura, para la protección de tripulaciones y naves espaciales, apoya este concepto: “esta nueva investigación se está produciendo debido a la aplicación de los códigos completos de física de plasma y experimentos de laboratorio.

En el futuro es muy posible que una o varias estructuras inflables puedan generar un campo de dipolo magnético a un nivel tal vez de 1 ó 2 Tesla (o 10.000 a 20.000 Gauss) como escudo activo contra el viento solar”, ha explicado Green según informa Universe Today.

Además, el posicionamiento de este escudo magnético aseguraría que las dos regiones donde se pierda la mayor parte de la atmósfera de Marte estarían protegidas. En el transcurso de la presentación, Green y el panel indicaron que los principales canales de escape están localizados “sobre la capa polar norte con material ionosférico de mayor energía, y en la zona ecuatorial con un componente estacional de baja energía con un escape de iones de oxígeno de 0,1 kilos por segundo”.

Resultado de imagen de Terraformar Marte

                                Terraformar Marte sería una empresa descomunal

Para probar esta idea, el equipo de investigación -que incluyó a científicos del centro de investigación de Ames, del centro del vuelo espacial de Goddard, de la universidad de Colorado, de la universidad de Princeton, y del laboratorio de Rutherford Appleton- condujo una serie de simulaciones usando su magnetosfera artificial propuesta, para ver cuál sería el efecto neto.

Lo que encontraron fue que un campo dipolar situado en el Punto de Lagrange L1 de Marte sería capaz de contrarrestar el viento solar, de modo que la atmósfera de Marte lograría un nuevo equilibrio. En la actualidad, la pérdida atmosférica en Marte es equilibrada en cierto grado por el saliente volcánico desde el interior y la corteza de Marte. Esto contribuye a una atmósfera superficial que es de aproximadamente 6 milibares en la presión del aire (menos del 1% que a nivel del mar en la Tierra).

Imagen relacionada

                                            Dotar de atmósfera a Marte

Como resultado, la atmósfera de Marte naturalmente se espesaría con el tiempo, lo que conduciría a muchas nuevas posibilidades para la exploración y colonización humanas. Según Green y sus colegas, estos dipolos incluirían un aumento promedio de alrededor de cuatro grados centígrados, lo que sería suficiente para derretir el hielo de dióxido de carbono en la capa de hielo polar del norte. Esto provocaría un efecto invernadero, calentando aún más la atmósfera y haciendo que el hielo de agua en las capas polares se derrita.

Según sus cálculos, Green y sus colegas estimaron que esto podría llevar a que se restablezca una séptima parte de los océanos que cubrieron Marte hace miles de millones de años, un sistema que culmina en la terraformación.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


 

Investigadores del Departamento de Física Aplicada de la UPC, en España, junto con un equipo de la California State University de los Estados Unidos, han demostrado por primera vez que la transición en la alternancia cardiaca, una arritmia potencialmente mortal, comparte características con el ordenamiento ferromagnético de los metales. La investigación ayuda a entender mejor cómo se origina la muerte súbita y abre la puerta a diseñar nuevos fármacos para evitarla.

Las muertes súbitas cardíacas representan aproximadamente el 10% de los casos de muerte natural y la mayoría se deben a la fibrilación ventricular. En los Estados Unidos esto representa unas 300.000 muertes al año y en España, unas 20.000. Investigadores del Departamento de Física Aplicada de la Universitat Politècnica de Catalunya (UPC), junto con científicos de la California State University han demostrado, por primera vez, que la transición a la alternancia cardiaca, una arritmia relacionada con un mayor riesgo de muerte súbita, comparte características comunes con el ordenamiento ferromagnético de los metales. Esta nueva medida física permite entender mejor las causas de la muerte súbita y permitirá avanzar en el diseño de fármacos que puedan evitarlo. El artículo, titulado Calcium Alternans is Due to an Order-Disorder Phase Transition in Cardiac Cells, ha sido publicado en la revista científica Physical Review Letters.

 

Hoy en día, las enfermedades cardíacas suponen una de las principales causas de muerte en los países desarrollados. De particular relevancia es la muerte súbita cardiaca, donde se produce una pérdida brusca de la función cardiaca. En situaciones normales, el corazón actúa como una bomba donde el orden de contraerse y bombear sangre se origina por pequeños cambios en las propiedades eléctricas de las células miocárdicas. Una parte importante de los casos de muerte súbita se deben a problemas en la sincronización de esta orden eléctrica, dando lugar a una contracción desordenada del corazón conocida como fibrilación ventricular. En este estadio, el corazón no es capaz de bombear la sangre y la muerte ocurre en pocos minutos, a menos que se administre un choque desfibrilador.

Resultado de imagen de administre un choque desfibrilador.

Uno de los posibles desencadenantes de la fibrilación ventricular es una arritmia conocida como alternancia cardiaca, donde la contracción del corazón se produce de manera coordinada en cada latido, pero su intensidad varía dando lugar a una contracción fuerte y débil en latidos alternativos. Para entender el origen de esta arritmia es necesario estudiar cómo se produce la contracción dentro de la célula, donde existen cientos de pequeñas subunidades compuestas por agrupaciones de canales que liberan iones de calcio cuando reciben la orden eléctrica. Esto es lo que marca la intensidad de la contracción: si liberan más calcio, la contracción es más fuerte; en cambio, si casi no liberan, hay poca contracción.

[Img #26821]

Blas Echebarria, del Departamento de Física Aplicada de la Universitat Politècnica de Catalunya. (Foto: UPC)

Los científicos Enric Álvarez-Lacalle y Blas Echebarria, del Departamento de Física Aplicada de la UPC, junto con investigadores de la California State University, han demostrado, mediante modelos de simulación, que la alternancia se produce debido a un tipo de transición que ha intrigado a los físicos desde hace décadas, una transición de desorden en el orden estudiada originalmente para entender la pérdida de las características ferromagnéticas al aumentar la temperatura por encima de un umbral límite.

Un material ferromagnético está formado por pequeños imanes que pueden enfocarse en una dirección o en otra. Si cada uno de estos imanes apunta en una dirección diferente, es decir, si el sistema está desordenado, su efecto magnético se anula. En cambio, por debajo de una cierta temperatura, todos los pequeños imanes comienzan a enfocarse hacia la misma dirección y el sistema se ordena. Esto hace que todo el conjunto se comporte como un gran imán.

En el caso del corazón, cada subunidad dentro de la célula encargada de liberar calcio puede decidir hacerlo o no. Cuando esto sucede de una manera desordenada, hay tantas células que liberan como que no, y el calcio total liberado es siempre el mismo, no varía. En cambio, en algunas situaciones se da una transición hacia un estado ordenado, como ocurre en los materiales ferromagnéticos. En este estado, todas las células deciden liberar o no liberar calcio al mismo tiempo, dando lugar a una secuencia de contracciones fuertes y débiles y, en último caso, a una transición hacia la fibrilación ventricular. La conclusión parece ser que el orden, en algunos casos, mata.

Según los científicos, entender bien cómo se produce la transición que causa la muerte súbita puede ayudar a diseñar fármacos que la eviten. Los resultados obtenidos de la investigación abren la puerta a estudiar posibles aplicaciones.

Sobre el siguiente paso de la investigación, Blas Echebarria explica que “actualmente estamos estudiando si el mismo efecto se observa en las células auriculares. Esto supondría un paso para entender la fibrilación auricular que, a pesar de no provocar la muerte súbita como la ventricular, conlleva un elevado riesgo de embolia y presenta una prevalencia muy alta, sobre todo en personas mayores de 60 años, disminuyendo su calidad de vida “. Para ello cuentan con el apoyo de científicos del Instituto de Ciencias Cardiovasculares de Cataluña (ICCC-CSIC), los experimentos de los que intentan modelizar. (Fuente: UPC)

Publica: emilio silvera

el sueño de ese primer contacto

Autor por Emilio Silvera    ~    Archivo Clasificado en Otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

VIDA ALIENÍGENA

Más cerca de encontrar extraterrestres: los puntos del universo donde podrían estar

El descubrimiento de nuevos exoplanetas reaviva el debate sobre la existencia de posible vida extraterrestre.

En un primer momento se pensó que Gliese 667Cb era un buen candidato a albergar vida.

 

 

En un primer momento se pensó que Gliese 667Cb era un buen candidato a albergar vida. ESO

Reportaje de prensa por MARTA SOFÍA RUIZ
 

 

Científicos: La emisión de señales en busca de vida extraterrestre podría provocar el fin del mundo


En E.T no conocemos la localización exacta del planeta al que el extraterrestre llama casa. En Battlestar Galactica hay una civilización humana que habita en doce planetas, pero en un lugar impreciso de la Vía Láctea. Y, por supuesto, en Star Wars tampoco sabemos dónde se encuentra la galaxia muy muy lejana en la que tiene lugar la saga.

Aunque en muchos casos la ciencia ficción no ofrece una referencia real —o realista— de la procedencia de los extraterrestres que protagonizan sus relatos, puede que los descubrimientos de planetas más recientes les sirvan de inspiración para futuras ocasiones o que alguno de ellos acabe ofreciéndoles una nueva especie que incluir en sus historias.

Desde que en 1992 se anunció el descubrimiento del primer planeta que orbitaba alrededor de una estrella que no fuera el Sol, el número de exoplanetas descubiertos no ha dejado de aumentar hasta superar los 3.000. Y con cada descubrimiento llega la gran pregunta, la que inquieta a la sociedad en su conjunto: ¿puede haber vida en ellos? LHS 1140b es el último candidato a planeta con vida mientras científicos, misiones y radiotelescopios continúan vigilando el universo en busca de algo más.

EL NUEVO PLANETA ROCOSO

 

 

 

Ilustración del nuevo planeta terrestre orbitando alrededor de la estrella enana roja LHS 1140

 

 

Esta semana, un equipo de investigadores ha revelado la existencia de un planeta rocoso (LHS 1140b) situado a 40 años luz: el nuevo mejor candidato para buscar indicios de vida. Como sucede con el resto de exoplanetas potencialmente habitables, este mundo se encuentra a una distancia de su estrella que le permitiría tener agua en estado líquido.

Pero eso no es todo. Según el paper publicado en la revista Nature que detallasus características, las condiciones de su astro son especialmente favorables. LHS 1140, la enana roja alrededor de la que gira esta supertierra, emite menos radiación de alta energía que otros astros con una masa similar —un 15% de la de nuestro Sol— y, además, no lanza llamaradas.

Este prometedor anuncio es solo el último de los innumerables que nos han hecho pensar, cada cierto tiempo, en la posible existencia de vida extraterrestre, sea en forma bacteriana o en alguna versión más avanzada y similar a los humanoides alienígenas que han poblado las películas de ciencia ficción.

UN NUEVO SISTEMA PLANETARIO

En febrero, la NASA tuvo a medio mundo con el corazón en un puño al celebrar una rueda de prensa que, por el bombo con que se anunció, parecía la definitiva: la de la confirmación de que se habían descubierto aliens. Después de un tuit aclarando que no se trataba de extraterrestres, la agencia aeroespacial reveló la existencia de un nuevo sistema planetario a 39 años luz de la Tierra con 7 planetas del tamaño de nuestro hogar azul. Y aunque no eran los 12 de Battlestar Galactica, el descubrimiento era de gran relevancia.

Ver imagen en Twitter

Girando en torno a la estrella TRAPPIST-1, tres de los objetos celestes se encuentran en la zona habitable del planeta. Si bien en un principio cundió el optimismo, y aun tratándose un importante descubrimiento, ahora sabemos que la cercanía entre estas tres posibles tierras plantea la posibilidad de que estén bloqueadas por fuerzas de marea, presentando siempre la misma cara a su estrella. Esto haría que tuvieran una cara con altas temperaturas e iluminada y otra en oscuridad perpetua, algo que dificultaría la existencia de vida.

UNA ESTRELLA MUY PRÓXIMA

 

 

Resultado de imagen de trappist 1

 

 

Antes del revuelo causado por los planetas de TRAPPIST-1 y por el mundo rocoso recién descubierto, el exoplaneta Próxima Centauri b, orbitando dentro de la zona habitable de la estrella enana roja Próxima Centauri, lamás cercana al Sol, fue el que protagonizó los titulares.

¿Podría albergar vida este planeta del tamaño de la Tierra? Aunque en un principio los pronósticos fueron tremendamente optimistas, un estudio publicado en The Astrophysical Journal Letters reveló que, considerando la edad de su estrella enana roja y la proximidad del planeta a este astro, Proxima Centauri b está expuesto a una cantidad de emisiones de luz ultravioleta y rayos X que implicarían una alta pérdida de oxígeno de la atmósfera, lo que impediría la formación de agua.

LOS OTROS CANDIDATOS

 

No hay que olvidar que en las últimas décadas y especialmente en los últimos años, los exoplanetas, e incluso los habitables, han brotado como setas. En 2011, los científicos descubrían Gliese 667Cc, en un sistema estelar triple en la constelación del Escorpión. A una distancia de 23,6 años luz, el planeta orbitaba dentro de la zona de habitabilidad estelar y se convirtió en el planeta habitable conocido más cercano a la Tierra.

Unos años más tarde, en 2014, se descubría Kepler-186f, un exoplaneta que orbita la estrella enana roja Kepler-186. Este fue el primero habitable de un tamaño similar a nuestro planeta azul que se encontró. Por su parte, Kepler 438b, descubierto en 2015 orbitando alrededor de una estrella enana roja a más de 470 años luz de la Tierra, es todavía hoy el que se parece más a nuestro hogar, con un índice de similitud del 88 %.

El planeta Kepler 442b, comparado con la Tierra.
El planeta Kepler 442b, comparado con la Tierra. Wikipedia

Pero hay ahí no acaba la cosa. Kepler 442b, situado a una distancia de 1.100 años luz —y el cuarto entre los mayores candidatos a análogo terrestre, con un índice de similitud con la Tierra del 84 %—; o los planetas Kepler 62e, Kepler 62f yKepler 452b, este último desplazándose en torno a una estrella similar a nuestro Sol, han sido en otras ocasiones los candidatos más firmes a planeta más parecido a la Tierra.

¿El problema? Que al igual que sucede con otros descubrimientos más recientes, puede que en ninguno de estos planetas potencialmente habitables se haya desarrollado realmente vida por culpa de la actividad de su estrella y de las condiciones extremas que presentarían debido a su influjo.

Sin embargo, queda sitio para la esperanza. Aunque las condiciones no sean las más favorables, alguno de los exoplanetas mencionados puede albergar vida, aunque no sea tal y como nos la imaginamos (o como nos la ha pintado Hollywood). Además, nuevas misiones como TESS, cuyo lanzamiento está previsto por la NASA para 2017, y tecnologías como el telescopio espacial James Webb y el radiotelescopio MeerKAT, permitirán mejorar y ampliar la búsqueda de nuevas tierras y, con ella, la posibilidad de hallar vida y de encontrar otro planeta que sea total y realmente habitable, uno como ese al que E.T. llamaba casa.

La expansión acelerada del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

El Modelo del Big Bang, que justo es reconocerlo, coincide con las observaciones realizadas, algunos, sin embargo, no lo tienen tan claro y dudan de que, a partir de un punto de infinita densidad y energía saliera todo esto que llamamos universo.

El Premio Nobelk de Física de 2011 se otorgó a los tres físicos que arriba podeis contemplar “por el descubrimiento de la expansión acelerada del universo gracias a observaciones de supernovas lejanas”. Es sin duda una de los hallazgos más extraordinarios que nos ha ofrecido la cosmología desde el descubrimiento del fondo cósmico de radiación de microondas. Gracias a estas observaciones, ahora sabemos que el universo no sólo se expande sino que lo hace de forma acelerada, en contra de lo esperado si estuviera compuesto de materia ordinaria.

(Es curioso que, después de que los premios fuesen concedidos a estos físicos, ha salido un español que, según dice y ha sido publicado, tenía registrado el trabajo, o uno similar, al que ha valido el novel de 2.011 a estos de arriba. La polémica está en marcha).

 

Esta imagen compuesta muestra conglomerado de galaxias 1E 0657-56. Este conglomerado se formó despues del choque de dos grandes grupos de galaxias, el suceso más energético que se conoce en el universo luego del Big Bang. Lo cierto es que, cuando ese punto (singularidad) del que surgió todo, es decir, el nacimiento del Universo, mediante el llamado Big Bang, la expansión del universo fue exponencial y ciertamente tuvo que ser máyor que c, lo cual nos lleva a pensar en cómo pudieron formarse las galaxias, si todo se estaba expandiendo a tal velocidad, la materia no tendría que haberse podido aglomerar (juntar) para formarlas. ¡Es todo tan extraño!

Los astrónomos dicen que han encontrado las mejores pruebas hasta la fecha sobre la Materia Oscura, la misteriosa sustancia invisible que se cree constituye la mayor parte de la masa del universo. En la imagen de arriba han querido significar, diferenciándola en colores, las dos clases de materia, la bariónica y la oscura que, en este caso, sería la azulada -según dicen-. Sin embargo, la imagen no refleja la proporción que dicen existe entre la una y la otra.

Resultado de imagen de Lanzamos con fuerza una pelota hacia arriba

Para poder comprender este resultado tan extraordinario, podríamos poner un ejemplo sencillo: Por ejemplo, si lanzamos una pelota con fuerza hacia arriba, ésta sale despedida en la medida de la fuerza que la impulsó, y, llegado a un punto, la Gravedad que ejerce la Tierra sobre ella, la hará caer de nuevo. Sin embargo, si lanzamos la pelota con mucha más fuerza, ésta podría vencer la gravedad terrestre y salir al espacio exterior y escapar a velocidades cada vez menores. Sin embargo, lo que han observado los investigadores que han recibido el Nobel en 2011, es que el universo no se comporta de esta manera. En lugar de frenarse conforme se expande, el universo parece expandirse de forma acelerada. En la analogía de la pelota, es como si esta, una vez escapara de la Tierra, se alejara con una velocidad cada vez mayor. De esta realidad observada, se deduce de manera clara que, sobre el Universo, está actuando una fuerza desconocida que lo atrae y supera la atracción gravitacional de toda la materia que contiene conocida por nosotros.

Pero antes de describir las observaciones, recapitulemos sobre lo que sabemos del universo hasta ahora. La expansión del universo fue descubierta en los años 20 del pasado siglo por Vesto Slipher, Knut Lundmark, Georges Lemaítre y Edwin Hubble. El ritmo de exdpansión depende del contenido de energía, y un universo que contiene sólo materia termina frenándose gracias a la fuerza de gravedad.

                     Las galaxias se alejan las unas de las otras ganando velocidad

Las observaciones de la recesión de las galaxias, así como de las abundancias de elementos ligeros, pero sobre todo del fondo de radiación de microondas, nos han permitido construir una imagen del universo en expansión, a partir de un origen extremadamente caliente y denso, que se va enfriando conforme se expande. Hasta hace unas décadas se creía que esa expansión era cada vez más lenta y se especulaba sobre la posibilidad de que eventualmente el universo “recolapsara”. Sin embargo, las observaciones de la luz que nos llega de supernovas a distancias astronómicas, de hasta siete mil millones de años-luz -hechas por dos colaboraciones independientes: El Supernovae Cosmology Project,  liderado por Saul Perlmutter, y el High Redshift Supernova Project,  de Brian Schmidt y Adam Riess- mostraron que actualmente el ritmo de expansión está acelerándose, en lugar de decelerarse.

La hipótesis más común para dar cuenta de la expansión acelerada del universo es asumir la existencia de un tipo de energía exótica llamada energía oscura. De acuerdo con los cálculos cuantitativos alrededor del 70% del contenido energético del Universo consistiría en energía oscura, cuya presencia tendría un efecto similar a una constante cosmológica de tipo expansivo como el observado; sin embargo, la naturaleza exacta de este tipo de energía es desconocida.Pero, ¿qué pasa con las observaciones realizadas?

Estas observaciones han sido posible gracias  a que las supernovas de tipo Ia son explosiones extraordinariamente violentas que se ven a enormes distancias y afortunadamente siguen un patrón de luminosidad característico, llegando a su máximo pocos días después de la explosión y a partir de ahí lentamnete decreciendo en luminosidad hasta que dejamos de verla. La relación entre la máxima luminosidad y el período de decrecimiento se puede calibrar con supernovas cercanas, de manera que midiendo estos períodos para muchas supernovas podemos deducir su distancvia a nosotros y de ahí el ritmo de expansión del universo desde el momento en que la supernova explotó hace miles de millones de años. Las medidas de las supernovas lejanas muestran no sólo que el universo se está expandiendo aceleradamente hoy día, sino también que en el pasado lo hacia de forma decelerada, lo que concuerda con nuestras predicciones basadas en la Teoría de Einstein.

En el contexto del Modelo estándar cosmológico, la aceleración se cree causada por la energía del vacío -a menudo llamada “energía oscura”- una componente que da cuenta de aproximadamente el 73% de toda la densidad de energía del universo. Del resto, cerca del 23%, sería debido a una forma desconocida de materia a la que llamamos “materia oscura”. Sólo alrededor del 4% de la densidad de la energía correspondería a la materia ordinaria, es decir, la que llamamos Bariónica, esa que emite radiación, la luminosa y de la que estamos nosotros constituidos, así como las estrellas, los mundos y las galaxias. Es, precisamente esa luz, la que nos permite adentrarnos en lo más profundo del universo desconocido, lejano y oscuro para poder saber, sobre estos misterios.

La energía del vacío es una clase de energía del punto cero existente en el espacio incluso en ausencia de todo tipo de materia. La energía del vacío tiene un origen puramente cuántico y es responsable de efectos físicos observables como el efecto Casimir y otros.

En nuestras vidas cotidianas, los efectos de la energía de vacío son ínfimos, diminutos, pero aún así detectables en pequeñas correcciones a los niveles de las energías de los átomos. En Teorías de campos relativistas, la energía de vacío está dada por una expresión matemáticamente idéntica y físicamente indistinguible de la famosa constante cosmológica, o por el contrario varia con el tiempo, algo que tendría consecuencias importantísimas para el destino del universo y que es un tema de investigación candente en cosmología, con varios experimentos propuestos para detectarlo.

Tipos de espacio según la densidad crítica del universo. Es decir, dependiendo del valor de Omega, tendremos un universo abierto, cerrado o plano. De momento, todos los indicios nos dicen que estamos  en un universo plano que se expandirá para siempre.

En fin amigos, el tema es interesante y lo continuaremos en otro momento…

Le he robado un rato al trabajo para dejar esta página en el Blog por estimarla de interés para que todos, estén al día de los últimos descubrimientos en relación al universo en el que vivímos y de lo que los científicos nos cuentan de vez en cuando que, no siempre (creo), coincide con la realidad.

emilio silvera

Siguen descubriendo nuevos mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en a otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Descubierto el exoplaneta con más posibilidades para buscar vida

 

Un equipo de astrónomos halla un mundo habitable a 40 años luz que podría ser un “punto azul pálido” como la Tierra vista desde el espacio

 

 

Si los humanos pudiéramos escapar mañana a otro sistema solar, nuestra mejor opción sería ir a una enana roja. Estos astros mucho más pequeños y tenues que el Sol, invisibles a simple vista en el cielo nocturno, son los más abundantes en la Vía Láctea y albergan los planetas más cercanos y parecidos a la Tierra que se conocen. Ayer, el mejor destino hubiera sido el astro Trappist-1, que posiblemente alberga siete tierras, tres de ellas habitables, es decir, con posible agua líquida, a unos 40 años luz de nosotros. Los más arriesgados argumentarían que es mejor viajar a Próxima b, donde está el planeta terrestre más cercano al nuestro, a apenas cuatro años luz. Hoy, la cosas han cambiado, pues se ha descubierto el exoplaneta donde puede ser más probable encontrar indicios de vida, según sus descubridores.

                       Muchas son las enanas rojas que tienen en órbitas planetas como la Tierra

El nuevo planeta está a 40 años luz de la Tierra y orbita en torno a una enana roja llamada LHS 1140. En septiembre de 2014, el telescopio M-Earth, en Chile, captó una leve disminución de su luz que podía deberse al tránsito de un planeta. Este telescopio, junto a su gemelo en el hemisferio norte, tiene como objetivo observar todas las estrellas enanas que hay a menos de 100 años luz de la Tierra, a razón de 30 minutos por astro. Tras detectar la señal, el telescopio comenzó a seguir a la estrella en tiempo real mientras un sistema de inteligencia artificial seleccionaba los datos interesantes para confirmar la existencia del planeta.

Imagen relacionada

Los resultados del estudio, publicados hoy en Nature y que incluyen el uso de otros telescopios, confirman que hay un planeta con un radio 1,4 veces el de la Tierra y una masa seis veces y media mayor. Estos dos datos implican que lo más probable es que este planeta tenga un núcleo de hierro denso recubierto de rocas, la misma composición que la Tierra.

Este nuevo mundo está unas 10 veces más cerca de su sol que la Tierra, pero el astro es tan tenue que la cantidad de radiación que le llega es la mitad de la que recibe nuestro planeta. Esto hace posible que el planeta tenga dos elementos indispensables para la vida: agua líquida y atmósfera.

Resultado de imagen de Enana roja y su planeta

Por ahora este es el candidato número uno a ser un planeta como la Tierra”

 

 

 

 

 

“Por ahora todos los datos que tenemos nos indican que este planeta debe tener un aspecto como el de la Tierra”, explica Jason Dittmann, astrónomo del Centro de Astrofísica Harvard-Smithsonian (EE UU) y coautor del estudio, quien desarrolló el sistema de inteligencia artificial que se ha empleado en el descubrimiento. “Por ahora este es el candidato número uno a ser un planeta como la Tierra”, asegura.

Resultado de imagen de El planeta LHS 1140b

El planeta LHS 1140b se habría formado hace 5.000 millones de años posiblemente de una forma similar a la Tierra, aunque en un entorno mucho más hostil. Cuando las enanas rojas son jóvenes, emiten una alta radiación que puede destruir la atmósfera de los planetas rocosos en su entorno y hacerlos más parecidos a Venus que a nuestro planeta, explica Dittmann. El hecho de que este planeta sea ligeramente más grande que la Tierra podría favorecer que en el pasado albergase mares de lava que podrían haber permitido conservar una atmósfera con su aportación de vapores magmáticos.

Por ahora este puede ser el mejor candidato para observar la primera atmósfera de un mundo habitable fuera del Sistema Solar. Dittman señala que su equipo ya ha pedido tiempo de observación con el telescopio espacial Hubble para medir la dispersión de Rayleigh, el efecto que hace que la Tierra vista desde el espacio sea un punto azul pálido, y que podría confirmar la existencia de una atmósfera en el nuevo exoplaneta. Y en un año se podría usar el Telescopio Espacial James Webb para detectar oxígeno, metano y dióxido de carbono, compuestos que podrían indicar la presencia de vida, señala.

Resultado de imagen de Trappist-1

                                                   Trappist-1

El descubrimiento de este nuevo planeta es importante “comparado con Trappist-1 y Próxima b porque es el primer planeta terrestre con masa y tamaño bien determinados”, opina Guillem Anglada-Escudé, astrónomo español codescubridor del exoplaneta más cercano a la Tierra. “De momento han encontrado un solo planeta, pero es probable que haya más”, como “pasó con trappist-1, y esperamos que pase con Próxima”, explica. “Este puede ser unos de los sistemas solares importantes para la detección de atmósferas”, señala, aunque puede ser que pronto haya mejores candidatos aún. “Creo que se van a descubrir media docena más de estos planetas, alguno más cercano que Trappist-1 y este, porque hay unas 400 estrellas entre Trappist-1 y nosotros”, resalta.

“Este es el siguiente paso que estábamos esperando en la búsqueda de planetas como la Tierra”, señala José Caballero, investigador del Centro de Astrobiología. “Se descubren tantos planetas de golpe ahora porque hay muchos grupos de investigación en el mundo detrás de lo mismo”, explica. “Dentro de una década vendrán los planetas habitables alrededor de estrellas de tipo G, como el Sol”, añade.