Sep
8
Sobre Próxima b. El planeta podría albergar alguna clase de vida
por Emilio Silvera ~
Clasificado en Futuro ~
Comments (0)
Próxima b alumbrado por la enana roja
ABC -Ciencia
Las auténticas posibilidades de vida en el planeta Próxima b
Astrobiólogos llegan a conclusiones bastante desalentadoras, pero no definitivas, respecto al nuevo mundo hallado alrededor de la estrella más cercana

Aunque hace apenas unas semanas que se anunció su descubrimiento, ha pasado ya más de un año en Próxima b, el planeta rocoso y potencialmente habitable que orbita la estrella más cercana al Sol, Próxima Centauri, a solo 4,2 años luz de distancia. Y en este corto espacio de tiempo, un grupo de astrobiólogos ha empezado ya a devanarse los sesos para averiguar, con los datos disponibles en la mano, qué clase de vida podría albergar este mundo tan parecido al nuestro. Con resultados, por cierto, que por ahora no son demasiado alentadores. El trabajo acaba de publicarse, en forma de dos artículos, en arXiv.org.
Los investigadores han considerado un amplio rango de escenarios para el planeta. Y en la mayor parte de ellos Próxima b resulta del todo inhabitable, aunque los científicos admiten un cierto margen de posibilidades que sí serían compatibles con la vida. En otras palabras, la vida en Próxima b es una posibilidad remota, pero no imposible.
![]()
En las dos últimas semanas, este mundo tan cercano a nosotros ha acaparado centenares de titulares de prensa debido a su masa, tan similar a la de la Tierra (1,3 veces), y especialmente al hecho de que se encuentra a la distancia exacta de su estrella, ni demasiado cerca ni demasiado lejos, para que su temperatura, ni demasiado caliente ni demasiado fría, permita la existencia de agua líquida en su superficie.
Sin embargo, los investigadores recuerdan en su estudio que existen muchos otros factores, además del tamaño y la distancia a su estrella, que resultan determinantes a la hora de ser un buen candidato para albergar vida.

El estudio, llevado a cabo por Rory Barnes y su equipo del Instituto de Astrobiología de la NASA, considera diferentes posibilidades y valores para los datos que aún no conocemos de Próxima b, como la variabilidad del brillo de su estrella madre o la composición de su atmósfera, si es que la tiene. De modo que los científicos fueron modificando esas variables y simularon qué clase de mundo resultaba en cada combinación.
En los dos artículos de arXiv.org, los astrobiólogos explican que una de las mayores cuestiones que marcan la posible habitabilidad de Próxima b es el hecho de que su estrella, Próxima Centauri, es una enana roja, lo cual implica que a pesar de que se trata de un astro mucho menos brillante y caliente que el Sol, su brillo puede ser muy variable y cambiante. Por ejemplo, su producción de energía, tras una observación de varios meses, ha descendido hasta un 17%, Una barbaridad si se compara con la variabilidad del brillo de nuestro Sol, de apenas el 0,1%, pero aún así suficiente para causar en la Tierra una o dos edades de hielo cada cien mil años.
Además, las enanas rojas también son conocidas por su capacidad de producir “mega llamaradas”, hasta 10.000 veces más poderosas de las mayores de nuestro Sol. Y cuando nuestra estrella lanza una llamarada sobre nosotros, todo un torrente de partículas cargadas puede provocar apagones generalizados y espectaculares auroras. La mega llamadara de una enana roja, mucho más potente, podría, por ejemplo, barrer de un solo golpe toda la atmósfera de un planeta si éste no dispone de un campo magnético lo suficientemente fuerte como para desviar el ataque.

Ni amaneceres ni atardeceres
Otra cuestión clave es el modo en que la cercanía de Próxima b a su estrella puede haber afectado a su evolución. De hecho, los escasos siete millones de km. que separan al planeta de la estrella (mucho más cerca, incluso, de lo que Mercurio está del Sol) podrían haber hecho que Próxima b esté “anclado” gravitatoriamente a ella, haciendo que siempre le muestre la misma cara, igual que la Luna hace con la Tierra. Si fuera así, en Próxima b no habría ni amaneceres ni atardeceres. Desde su superficie (en la cara que mira hacia su sol) veríamos contínuamente el gran disco rojizo de la estrella madre, que estaría siempre fijo en el cielo.
Ya en la década de los 90 los astrónomos hallaron que los planetas que siempre muestran la misma cara a sus estrellas pierden inevitablemente sus atmósferas, cuyos gases se congelan en su lado frío. Sin embargo, otros estudios posteriores discrepan de este punto, ya que los fuertes vientos superficiales podrían llevar, en determinadas condiciones, calor a la “parte trasera” del planeta. Una posibilidad crucial en el caso que nos ocupa.
En su estudio, Barnes y sus colegas consideran estos aspectos, junto a muchos otros, para tratar de averiguar cuáles son realmente las condiciones que reinan en Próxima b en la actualidad. Y la conclusión es que, a pesar de sus aparentes similitudes con la Tierra, Próxima b podría ser un mundo completamente distinto al nuestro, hirviendo en una de sus caras y congelado en la otra, como Mercurio, o quizá envuelto en una atmósfera tórrida, como Venus, o incluso ser un planeta templado y seco, como lo es Marte.

Agua y oxígeno no son suficientes
Existe también otra posibilidad, en la que el planeta contiene tanto agua como oxígeno, y aún así sigue siendo inhabitable, dado que un exceso de oxígeno podría obstaculizar, en vez de favorecer, la formación de biomoléculas complejas. Lo cual significa que, en las condiciones de Próxima b, ni siquiera la futura detección de agua y oxígeno serían garantías suficientes de la existencia de vida. Más fiable sería la detección de metano, un gas producido por los organismos vivientes.
Sin embargo, y entre los múltiples y descorazonadores escenarios posibles para Próxima b, los investigadores admiten un puñado de ellos en los que este esperanzador mundo podría haber evolucionado de una forma similar a la de la Tierra. Aunque para que sea así, el planeta debería de haber partido de unas condiciones iniciales muy concretas, con una enorme cantidad de agua disponible y una atmósfera muy rica en hidrógeno desde el principio. Cosa que, por desgracia, no sabremos a ciencia cierta hasta que la nueva generación de instrumentos, especialmente el nuevo telescopio espacial James Webb, sea puesto en órbita en 2018.
Pero expliquemos las velas láser. Forward se dio cuenta de que la relativamente baja dispersión de un haz láser permite iluminar una vela solar continuamente, aumentando su velocidad hasta velocidades compatibles con el viaje interestelar tripulado (un eufemismo para decir que un astronauta puede llegar a su destino antes de morir de viejo). En 1969 el canadiense Philip Norem perfeccionaría el concepto de Forward de nave interestelar propulsada por láser, pero había dos pequeñas pegas que se interponían entre esta brillante idea y la realidad. Una era que la vela láser debería ser increíblemente fina e increíblemente grande para acelerar a velocidades relativistas. Y uso increíble en el sentido literal. Por ejemplo, Norem imaginó una vela láser de 40 kilómetros de diámetro con un espesor de solo 0,3 micras (!) capaz de mantenerse a una temperatura de 1200º C de forma constante sin perder una reflectividad de un 99% en la longitud de onda del láser (si la reflectividad fuera inferior, la temperatura de la vela aumentaría y esta se vaporizaría). Vamos, unas características de ciencia ficción pura y dura.
Seguimos el reportaje
Mientras, el descubrimiento de Próxima b ha dado un gran impulso al Proyecto Starshot, que planea utilizar rayos láser para impulsar un enjambre de micro naves (del tamaño de granos de arroz) hasta un 20% de la velocidad de la luz. En suorigen, el proyecto contemplaba enviar las micro naves a Alfa Centauri, pero sus objetivos se han redefinido para que puedan dirigirse a Próxima b.
publica emilio silvera
Seguimos soñando pero, ¡mañana, será realidad!
Sep
7
Constantes de la Naturaleza
por Emilio Silvera ~
Clasificado en Constantes universales ~
Comments (2)

Si alguna de estas constantes de la Naturaleza, variaran tan sólo una millonésima, la vida no estaría presente
“En la Física existen una serie de magnitudes que contienen información que es independiente del sistema de medida que elijamos, lo cual es muy valioso no sólo en los cálculos. Además, estos parámetros que fija la naturaleza aparecen en las ecuaciones como parámetros que debemos ajustar lo más que podamos para que nuestras predicciones y nuestros modelos se ajusten a la realidad en la medida de lo posible.
Y aquí es donde viene el problema. Que son parámetros, es decir, su valor cuantitativo no es deducible de la teoría y por tanto hay que medirlo. Y esto añade la dificultad no sólo de idear un experimento, sino de hacerlo lo bastante preciso como para que el modelo sirva para algo.
El Modelo Estándar por ejemplo, que es el paradigma actual en el que se mueve la física de partículas y que recoge las interacciones fundamentales tiene unos 25 parámetros que se deben ajustar. Parámetros tales como la carga eléctrica, la masa, el espín, las constantes de acoplamiento de los campos, que miden la intensidad que éstos tienen, etcétera.
Ya no sólo se trata de averiguar el valor de cada una de ellas. Tampoco sabemos decir de antemano cuantas constantes fundamentales puede haber. Y es evidente que cuantas más constantes hay, más complicado se nos hace nuestro modelo.”
Si miramos hacia atrás en el Tiempo podemos contemplar los avances que la Humanidad logró en los últimos tiempos, caigo en la cuenta de que poco a poco hemos sido capaces de identificar una colección de números mágicos y misteriosos arraigados en la regularidad de la experiencia.
¡Las constantes de la naturaleza!
Dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.
Buscar esos secretos ocultos implica que necesitamos desentrañar la teoría más profunda de todas y la más fundamental de las leyes de la naturaleza: descubrir si las constantes de la naturaleza que las definen están determinadas y conformadas por alguna consistencia lógica superior o si, por el contrario, sigue existiendo un papel para el azar.

Si estudiamos atentamente las constantes de la naturaleza nos encontramos con una situación muy peculiar. Mientras parece que ciertas constantes estuvieran fijadas, otras tienen espacio para ser distintas de las que son, y algunas no parecen afectadas por ninguna otra cosa del - o en el – universo.
¿Llegaron estos valores al azar?
¿Podrían ser realmente distintos?

¿Cuán diferentes podrían ser para seguir albergando la existencia de seres vivos en el universo?
En 1.986, el libro The Anthropic Cosmological Principle exploraba las diez maneras conocidas en que la vida en el universo era sensible a los valores de las constantes universales. Universos con constantes ligeramente alteradas nacerían muertos, privados del potencial para desarrollar y sostener la complejidad que llamamos vida.
En la literatura científica puede encontrarse todo tipo de coincidencias numéricas que involucran a los valores de las constantes de la naturaleza. He aquí algunas de las fórmulas propuestas (ninguna tomada en serio) para la constante de estructura fina.
Valor experimental: 1/α = 137’035989561…
- Lewis y Adams: 1/α = 8π (8π5 / 15)1/3 = 137’384
- Eddington: 1/α = (162 – 16) / 2 + 16 – 1 = 137
- Wiler: 1/α = (8π4 / 9)(245! / π5)1/4 = 137’036082
- Aspden y Eagles: 1/α = 108π (8 / 1.843)1/6 = 137’035915

Por supuesto, si la teoría M da al fin con una determinación del valor de 1/α podría parecerse perfectamente a una de estas fórmulas especulativas. Sin embargo ofrecería un amplio y constante edificio teórico del que seguiría la predicción.
También tendría que haber, o mejor, que hacer, algunas predicciones de cosas que todavía no hemos medido; por ejemplo, las siguientes cifras decimales de 1/α, que los futuros experimentadores podrían buscar y comprobar con medios más adelantados que los que ahora tenemos, a todas luces insuficientes en tecnología y potencia.
Todos estos ejercicios de juegos mentales numéricos se acercan de manera impresionante al valor obtenido experimentalmente, pero el premio para el ingeniero persistente le corresponde a Gary Adamson, cuya muestra de 137-logía se mostraron en numerosas publicaciones.
Estos ejemplos tienen al menos la virtud de surgir de algún intento de formular una teoría de electromagnetismo y partículas. Pero hay también matemáticos “puros” que buscan cualquier combinación de potencias de números pequeños y constantes matemáticas importantes, como π, que se aproxime al requerido 137’035989561… He aquí algún ejemplo de este tipo.
- Robertson: 1/α = 2-19/4 310/3 517/4 π-2 = 137’03594
- Burger: 1/α = (1372 + π2)1/2 = 137’0360157

Unidades naturales que no inventó el hombre
Ni siquiera el gran físico teórico Werner Heisenberg pudo resistirse a la ironía o irónica sospecha de que…
“En cuanto al valor numérico, supongo que 1/α = 24 33 / π, pero por supuesto es una broma.”
Arthur Eddington, uno de los más grandes astrofísicos del siglo XX y una notable combinación de lo profundo y lo fantástico, más que cualquier figura moderna, fue el responsable impulsor de poner en marcha los inacabables intentos de explicar las constantes de la naturaleza mediante auténticas proezas de numerología pura. Él también advirtió un aspecto nuevo y especular de las constantes de la naturaleza.
“He tenido una visión muy extraña, he tenido un sueño; supera el ingenio del hombre para decir qué sueño era. El hombre no es más que un asno cuando tiene que exponer este sueño. Se llamará el sueño del fondo, porque no tiene fondo.”
A. S. Eddington
“El conservadurismo recela del pensamiento, porque el pensamiento en general lleva a conclusiones erróneas, a menos que uno piense muy, muy intensamente.”
Roger Scruton
Todo lo que existe… ¡Tiene una explicación!
Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del universo astronómico durante el siglo XX, ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera recogida. Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y a explorar y explorar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.
Entró en escena Arthur Eddington; un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de verificar, en una prueba decisiva durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segmentos de arco cuando pasaba cerca de la superficie solar, y así resultó.
“Arthur Eddington creyó en las teorías de Einstein desde el principio, y fueron sus datos tomados durante el eclipse solar de 1919 los que dieron la prueba experimental de la teoría general de la relatividad. La amplia cobertura informativa de los resultados de Eddington llevó a la teoría de la relatividad, y al propio Einstein, a unos niveles de fama sin precedentes.
Arthur Eddington está considerado uno de los más importantes astrónomos ingleses del siglo XX. Se especializó en la interpretación de las observaciones de los movimientos de las estrellas en el Observatorio de Greenwich. En 1913, fue uno de los primeros científicos no alemanes en entrar en contacto con las primeras versiones de la teoría general de la relatividad, e inmediatamente se convirtió en un declarado partidario.”
( http://www.experientiadocet.com)
Albert Einstein y Arthur Stanley Eddington se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco en el jardín de Eddington en el año 1.930, donde fueron fotografiados por la hermana del dueño de la casa.
Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas. Nunca se casó y vivió en el observatorio de Cambridge, donde su hermana cuidaba de él y de su anciana madre.
Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la naturaleza y predecir la existencia en el universo de cosas como estrellas y galaxias. ¡Se está saliendo con la suya!
Entre los números de Eddington, uno lo consideró importante y lo denominó “número de Eddington”, que es igual al número de protones del universo visible. Eddington calculó (a mano) este número enorme y de enorme precisión en un crucero trasatlántico concluyendo con esta memorable afirmación.
“Creo que en el universo hay
15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296
protones y el mismo número de electrones.”
Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.
Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas.

No siempre sabemos valorar la grandeza a la que puede llegar la mente humana: “… puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales …”
Eddington las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:
mp / me ≈ 1.840
La inversa de la constante de estructura fina:
2πhc / e2 ≈ 137
Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón:
e2 / Gmpme ≈ 1040
A éstas unió o añadió su número cosmológico, NEdd ≈ 1080.

¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día.
Eddington a estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica.
“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física demostrará que alguna o todas ellas pueden ser prescindibles?
¿Podrían haber sido diferentes de los que realmente son?”
El Modelo estándar es la teoría que tenemos pero…
De momento, con certeza nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran Teoría Unificada del Todo, que por fin nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo. ¡Es todo tan complejo! ¿Acaso es sencillo y no sabemos verlo? Seguramente un poco de ambas cosas; no será tan complejo, pero nuestras mentes aún no están preparadas para ver su simple belleza. Una cosa es segura, la verdad está ahí, esperándonos.
Para poder ver con claridad no necesitamos gafas, sino evolución. Hace falta alguien que, como Einstein hace 100 años, venga con nuevas ideas y revolucione el mundo de la física que, a comienzos del siglo XXI, está necesitada de un nuevo y gran impulso. ¿Quién será el elegido? Por mi parte me da igual quién pueda ser, pero que venga pronto. Quiero ser testigo de los grandes acontecimientos que se avecinan, la teoría de supercuerdas y mucho más.
emilio silvera
Sep
7
Rumores del saber del mundo
por Emilio Silvera ~
Clasificado en Rumores del saber del mundo ~
Comments (1)

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.
El punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.
![]()
André-Marie Ampère (fue un matemático y físico francés, Inventó el primer telégrafo eléctrico y, junto con Francois Arago, el electroimán, Formuló en 1827 la teoría del electromagnetismo. El amperio (en francñes ampère) se llama así en su honor.)

Poco después, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).
Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.
En 1.821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).
![]()
Faraday fue un gran experimentador y transmitió sus ideas en un lenguaje claro y simple, y, partiendo de sus experimentos, llegó Maxwell para sentar las bases (con sus cuatro ecuaciones vectoriales) de lo que era, en realidad, la electricidad y el magnetismo.
Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.
Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.
La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.
Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.
Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.
Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.
Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.
Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”

Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).
No quiero seguir por este camino de personajes y sus obras ya que están enmarcados y recogidos en mi anterior libreta (primera parte de personajes), así que desviaré mis pensamientos hacia otras diversas cuestiones de mi interés, y espero que también del vuestro.
Antes dejaba la reseña de algún refrán o pensamiento sobre la amistad, y en realidad también podemos ver la cara amable de esta forma de sentimiento-aprecio-amor que llamamos amistad.
Siempre hay mucho más de lo que se ve
Nosotros, los seres humanos, nunca vemos a nuestros semejantes como objetos o cuerpos neutros, sino que los miramos como personas con una riqueza interior que refleja su estado de ánimo o forma de ser, y de cada uno de ellos nos llegan vibraciones que, sin poderlo evitar, nos transmiten atracción o rechazo (nos caen bien o nos caen mal).
Son muchos y diversos los signos sensoriales que, en silencio, nos llegan de los demás y son recogidos por nuestros sensores en una enorme gama de mensajes sensitivos que llamamos indistintamente simpatía, pasión, antipatía, odio, etc.
Está claro que cuando el sentimiento percibido es positivo, la satisfacción se produce por el mero hecho de estar junto a la persona que nos lo transmite, que con su sola presencia, nos está ofreciendo un regalo, y si apuramos mucho, a veces lo podríamos llamar incluso “alimento del alma”. Estar junto a quien nos agrada es siempre muy reconfortante, y según el grado de afinidad, amistad o amor, el sentimiento alcanzará un nivel de distinto valor.
“Donde tú vayas, iré yo. Donde tú habites, habitaré yo. Tu pueblo será mi pueblo, y tu Dios será mi Dios. Donde tu mueras, moriré yo también, y allí seré enterrada, y que Dios me castigue si algo que no sea muerte me separa de ti.”
Libro de Rut (Biblia)
C. S. Lewis, en su ensayo de Los cuatro amores, explica cómo el afecto ignora barreras de edad, sexo, inteligencia y barreras sociales.
Lleva toda la razón; cada uno de los afectos ubicados en su justo nivel: el banquero todopoderoso irremisiblemente atado al cariño que le une con su niñera ya anciana; el jefe de gobierno que no puede evitar visitar (en la menor oportunidad) a su compañero de infancia, el zapatero de su pueblo; el rico hacendado, unido a su humilde secretario, 30 años a su lado, con el que comparte sus íntimos problemas; el hombre de 40 años que se ve inevitablemente enamorado de su secretaria de 20 años.
Son fuerzas irresistibles que invaden el interior de los seres humanos de toda edad o condición y les lleva a unir sus sentimientos a otras personas que, en ocasiones, parecen no tener ninguna afinidad con su situación social o cultural, pero así ocurre.
Nacemos para amar y ser amados; ¿qué sería de nosotros si no? Todo lo malo que hacen los hombres está basado siempre en la falta de sentimiento. Cuando el amor o el afecto están presentes, nada malo podrá suceder. Por el contrario, el amor nos lleva, sin dudarlo, a sufrir y darlo todo por la persona amada. Ésa es la grandeza del amor verdadero, lo podemos dar todo sin pedir nada. Sin embargo, el mecanismo humano, en esos casos, hace que la persona que recibe tanto amor tenga también la necesidad de darlo.
El afecto es la primera forma, el primer escalón para amar, y la amistad es la segunda, un escalón más arriba. Tenemos muchos ejemplos de autores clásicos que nos hablan de la amistad: Homero, Platón, Aristóteles, Cicerón, Séneca o San Agustín.
La primera literatura occidental, desde que Homero saca a pasear a Ulises por Troya y el Egeo, ya elogia esa relación que se presta entre los seres humanos y que da a sus vidas un colorido especial. La Ilíada y La Odisea, esas maravillas escritas hace casi tres milenios, son un canto a la amistad. Al leer en ellas podemos ver cómo la muerte de Patroclo es profundamente sentida por Aquiles, que gime y exclama:
“¡Oh, Patroclo! Ya que yo he de bajar después que tú a la tumba, no quiero enterrarte sin haberte traído las armas y la cabeza de Héctor…”
Sigue su bárbara perorata que, en aquellos tiempos y lugares, sólo reflejaban su sentimiento.
Dice Eurípides que cuando Dios da bienes, no hay necesidad de amigos. Pero nadie querría poseer todas las riquezas y estar solo, pues el hombre, como todos sabemos, es eminentemente un animal social, y su naturaleza le exige convivir con los otros seres de su misma condición para compartir con ellos sus logros, sus esperanzas, sus sentimientos y sus penas y alegrías. Así somos los humanos.
El cualquier tratamiento de la amistad aparecen varios rasgos comunes en todos los casos: relación entrañable y libre, recíproca y exigente, desinteresada y benéfica, nacida de una inclinación natural por atracción y simpatía de las partes implicadas y que se alimenta y acreciente del convivir compartiendo. Así, en los malos momentos, nos refugiamos en los amigos que nos ofrecen consuelo y, con ellos, nos gusta compartir también las alegrías. Sí, es una verdadera suerte contar con amigos en los que, de verdad, podamos confiar.
No soy masoquista, sin embargo, siento profundamente que, en verdad, sufrir por algo que vale la pena, es una alegría.
¿Quién no está dispuesto a sacrificarse por el bien del ser amado?
Pero… ¿Cómo he terminado así el trabajo?
emilio silvera
Sep
6
¡La Vida! ¿En las profundidades de la Tierra?
por Emilio Silvera ~
Clasificado en La vida ~
Comments (2)
« Los misterios del Universo


En la aventura que nos contaba Julio Verne en su libro Viaje al centro de la Tierra, el famoso escritor de imaginación desbordante narra la historia de una expedidón al centro de la Tierra. Los exploradores intrépidos y arriesgados aventureros descubren, con asombro, todo un mundo nuevo debajo de la superficie del planeta al que llegan recorriendo galerias sin fin y manatiales de aguas subterráneas que, en alguna ocasión, estaban poblados por extraños seres. Grandes cavernas subterráneas donde habitaban exóticos animales y seres vivos del reino vegetal de enormes dimensiones. Por desgracia, la historia de Verne contradecía la evidencia geológica de su época. Se sabe muy bien que profundidad significa caliente: la temperatura puede aumentar hasta 20 grados Celcius por cada kilómetro que se descienda y la vida, resultaría imposible para la mayoría de los organismos.
Así que, aquella historia que de niños nos transportaba al mundo mágico de las entrañas de la Tierra, en realidad, habría sido de imposible realidad por una expedición de humanos. El gradiente de temperatura continúa dentro de la corteza de la Tierra y atraviesa su manto fundido para llegar al núcleo en donde la temperatura asciende a más de 3.000 grados Celcius. Cualquier viaje al Centro de la Tierra significaría una incineración segura para los intrépidos (¿o locos?) expedicionarios. El sueño de Verne de que podía existir vida bajo la superficie de la Tierra parecía ridículo.

Sus aguas rojas, muy ácidas, y de alto contenido en metales pesados sobre todo hierro, contienen oxígeno, que permite la vida de organismos fotosintéticos y … No pocas veces, llevado por la curiosidad, he paseado por estos entornos “marcianos” que, en algunos lugares, te hacen pensar que, verdaderamente estás en otro mundo. Sin embargo, cuando miras hacia arriba y puedes contemplar la atmósfera y el cielo azul… ¡Vuelves a la Tierra!


Estas son dos de las muchas imágenes que del Rio Tinto podemos obtener. Hace unos días estuve por la zona curioseando en algunos de sus recovecos y meandros por los que discurre el agua roja entre los minerales del terreno, y, desde luego, parece mentira que en ese agua de un PH imposible, puede existir alguna clase de vida y, sin embargo… ¡La Hay!
Un proyecto de la NASA buscó vida en las aguas letales del Río Tinto y en el subsuelo de aquel pueblo de la Sierra de en Huelva. Sus similitudes con el planeta Marte nos podía enseñar lo que allí podríamos encontrar. Los trabajos comenzaron con la perforación más profunda hecha jamás en Riotinto. El objetivo era encontrar una bolsa subterránea de agua donde los responsables de la investigación esperaban encontrar una colonia de organismos nunca antes observados. De bacterias capaces de alimentarse a base de hierro y que no necesitaban ni luz ni oxígeno atmosférico para sobrevivir. Los expertos creían que estos seres vivos colonizaron Riotinto desde las profundidades, dando a la zona su inconfundible paisaje extraterrestre de ríos rojos y laderas amarillas debido a la alta concentración de ácido sulfúrico que generan al alimentarse de pirita.

“Río Tinto es un análogo casi perfecto para probar tecnología y para simular las rocas que hay en Marte. Además, está muy cerca de una zona habitada, lo que facilita la organización de las expediciones”, explica a ELMUNDO.es Felipe Gómez, investigador especializado en ambientes extremos del CAB y coordinador del proyecto Europlanet. “Para poder hacer perforaciones en Marte es necesario probar la tecnología en la Tierra y Río Tinto es un gran lugar para hacerlo”.
Los biólogos tienen conocimiento desde hace mucho tiempo de que el mantillo contiene bacterias y de que las cuevas de piedra caliza pueden estar habitadas por organismos especialmente adaptados. Pero , aparte de estas excepciones, se decretó que el planeta estaba muerto por debajo del suelo. La misma era la opinión dominante respecto a las profundidades oceánicas.

Caracol abisal. Todos conocemos de las extrañas criaturas que viven en las profundidades de los océanos y que, no dejan de sorprendernos cada vez que hallamos nuevas y exóticas criaturas cuyas configuraciones morfológicas van siempre, más hallá de lo que nuestra imaginación pudo dibujar en nuestras mentes. Algunos dicen que, el único lugar habitado que sigue siendo un misterio para el ser humano son los océanos abisales. Allí, en la oscuridad perpetua, acaba de ser descubierto un fantástico ecosistema con extraordinarios seres vivos capaces de vivir sin luz, a temperaturas extremadamente elevadas y en un ambiente muy tóxico, por las grandes chimeneas volcánicas que hay en el fondo oceánico. El hallazgo ha tenido lugar en el South West Indian Ridge, en el Océano Índico, a 2.700 metros de profundidad, gracias a la expedición Dragon Vent que (en la que no participó Julio Verne y, sin embargo, participa de alguna manera).
“Nada podría sobrevivir -decían- , por debajo de la “zona fótica” las capas del océano iluminadas por la luz solar. El descubrimiento de ecosistemas en los húmeros megros cambió todo eso.


Existe la hipótesis de que la vida haya surgido precisamente en estos humeros, en vez de en la superficie del océano. Yo pienso que es una posibilidad plausible, ya que es un medio tan activo como el medio superficial de aquel tiempo: hay vulcanismo, contraste de materiales y temperaturas… Hace algunos años nadie hubiera dicho que el fondo oceánico, un medio tan extremo, pudiese albergar semejantes ecosistemas. Pero si algunos supermicrobios pueden vivir varios kilómetros de profundidad najo el mar, ¿no podrían existir también bajo la tierra?
El primer científico en difundir publicamente la opinión de que la vida podría florecer a gran profundidad debajo de la Tierra parece haber sio un geólogo de Chicago llamado Edsom Bastin, allá por los años veinte. Bastín se preguntaba por qué las aguas extraídas de los campos de petróleo contenía sulfuro de hidrógeno. Él sugirió que el gas podría haber sido producido por bacterias reductoras de sulfato que viven a gran profundidad en las bolsas de petróleo.

En 1984 se encontró un meteorito marciano en la Antártida con restos de posible actividad biológica lo cual puso otra vez a esta teoría en consideración. En los lugares ´más insospechados han encontrado moléculas y azúcares que son esenciales para la vida.
Lo cierto es que, por todas partes, están presentes múltiples indicadores de actividad biológica a gran profundidad por debajo de la superficie de la Tierra. Esa hubiera sido la realidad en los tiempos de Verne si los geólogos hubieran sabido buscar de manera adecuada. Hasta los años sesenta no se descubrieron depósitos minerales subterráneios que parecían haber sido precipitados por microbios. Hierro, Azufre, Manganeza, Zinc y otras sustancias que se sabía eran utilizadas por las bacterias, aparecían concentradas en forma sospechosa. De hecho, un estudiante australiano de la Universidad de Londres, Lloyd Hanilton, descubrió formas inequívocas de microbios fósiles en vetas de mineral de jaspe. Él concluyó que éstas eran vestigios de microbios precipitadores de hierro que se habian hecho un hogar en los poros de las rocas.
![]()
Martialis heureka, hormiga ciega adaptada a la vida subterránea, de aspecto tan extraño que también es llamada “hormiga marciana”. Foto: Christian Rabelin. No deberíamos sorprendernos al hallar formas extrañas de vida en lugares imposibles y en los que ni podíamos imagfinar que existieran.
A pesar de la evidencia creciente de la vida subterránea, la opinión dominante de que la corteza de la Tierra es estéril no empezó realmente a cambiar hasta finales de los años sesenta. Los gobiernos trataban de investigar sobre la reducción de los residuos nucleares, cómo eliminarlos. El material radiactivo había sido enterrado en estratos profundos sobre la hipótesis de que nada podría sucederle. Sin embargo, estudios del agua subterránea ya habían sugerido que las bacterias ya podrían aquellos depósitos del subsuelo, y muestras de rocas extraídas de sondeos revelaban señales de tal presencia del mundo bacteriano y, si los microbios podían invadir los acuíferos profundos también podrían entrar en los vertederos nucleares subterráneos y corroer los recipientes contenedores para liberar, con el tiempo, los residuos. Preocupaciones análogas invadieron el mundo del petróleo cuando se descubrió que, de la misma manera, las bacterias también podían onfiltrarse en las reservas de crudo y correonperlos.

Cada ser vivo, dentro de su entorno, busca el medio de cubrir sus necesidades metabólicas y, en algunos casos, lo hacen de la manera más asombrosa que podamos imaginar. Colonias de miles de millones de estos dimunutos “personajillos” proliferan en los lugares más increíbles de la Tierra, los océanos y las profundidas terres…también se han localizado en la atmósfera a respetables alturas. El estudio de lo que cada una de ellas pueden hacer, no sólo es fascinante sino que, en no pocas ocasiones, hacen posible que nosotros, los humanos, podamos estar tan cómodamente instalados en un planeta de cuya atmósfera y medio ambiente, son responsables los diminutos procariotas.

Todos recordareis aquellos que, bautizados como Bacillus infernus, fueron encontrados en profundos pozos de más de 3 km de profundidad en los sedimentos del Triásico en la cuenca Taylorsville en Virginia, Estados Unidos. Descubrieron hipertermófilos únicos en forma de bastón, entre los que se incluían los antes nombrados.

Nanobacterias halladas en las nubes
Está claro a partir de todos los descubrimientos llevados a cabo que, la Tierra posee un submundo viviente generalizado cuya basta extensión sólo ahora se está revelando. Si las bacterias proliferan a una profundidad de medio kilómetro o más, como los exámenes sugieren, entonces, sumando sobre todo el planeta, ellas darían parte del diez por ciento de toda la biomasa de la Tierra. Y, la estimación podría ser mayor, ya que, se sospecha que, a mayior profundidad también podrían estar presentes estos “seres diminutos” que aguantan temperaturas de más de 110 grados Celcius (en unos 4 kilómetros de profundidad).


Desde la especulación infomal de Darwin de que la vida empezó en alguna pequela charca caliente, la sabiduría convencional ha consistido en que la vida es y siempre fue un fenómeno de superficie. El descubrimiento de la Biosfera profunda y caliente ha alterado espectacularmente esta visión. Si la vida puede florecer muy por debajo de la superficvie de la Tierra, quizá deberíamos mirar hacia abajo en busca el crisol en el que se forjó el primer ser vivo.

¿Os acordáis cuando salió aquella noticia? “Unas raras criaturas aparecen varios kilómetros bajo la superficie de la Tierra. Las especies, entre ellas una jamás vista antes, soportan temperaturas de hasta 48 grados en las profundidades donde no se creía posible que existiera la vida compleja. Desde su descubrimiento hace más de dos décadas, la biosfera del subsuelo profundo ha sido considerada como el reino de los organismos unicelulares, un reino que se extiende más de tres kilómetros bajo la corteza de la Tierra. Las limitaciones de temperatura, energía, oxígeno y el espacio parecían excluir la posibilidad de una vida más compleja. Los científicos no creían que organismos multicelulares podrían vivir en esas profundidades, pero se equivocaban.
Según los expertos, parecen que son varias las razones por las que un lugar en el subsuelo marino -o, mejor aún, en los sedimentos rocosos bajo el mismo- parece el emplazamiento natural más prometedor para el origen y la evolución temprana de la vida. La más obvia concierne a la continua amenaza de impactos cósmicos que proliferan en aquellos primeros momentos cuando la Tierra era joven. La violencia del intenso bombardeo habría esterilizado efectivamente la superficie de la Tierra una y otra vez. Con rocas vaporizadas haciendo hervir los océanos y fundiendo la Tierra, las condiciones habrían sido letales al menos hasta una profundidad de decenas de metros. Sin embargo, a más profundidad, los organismos habrían podido soportar incluso los mayores impactos.
Así, de alguna manera, Julio Verne se salía con la suya aunque, de una manera menos deslumbrante y con escenarios muy diferentes a los que el nos ofrecía en sus magnificos relatos.


Al final resulta que, el visionario Verne, podía llevar razón y, la Vida, sí estaba presente en las profundidades de la Tierra aunque, con menos fantasía de la que el volvó en sus historia. Seguramente, le habría encantado poder ver alguna de esas películas que han proliferado para hacernos disfrutar con sus historias “hechas realidad” en el cine.
¡La Vida! Según la entiendo, se abrirá paso en cualquier medio que le de la más mínima oportunidad.
emilio silvera
Sep
6
¡Esa máquina sorprendente!
por Emilio Silvera ~
Clasificado en Cerebro y Mente ~
Comments (0)
Mono pensante
El tamaño (del cerebro) sí importa

Cerebro de embrión de ratón en el que se inyectó el gen humano que determina la expansion del cerebro. NATURE
“¿Qué nos hace humanos? ¿Qué es lo que me permite a mí expresar mis ideas a través del código simbólico que estoy tecleando ahora mismo, y lo que le permite a usted descifrar estas combinaciones de letras? Hoy sabemos que compartimos más del 95% del ADN con nuestros parientes más cercanos del reino animal, pero los grandes simios no pueden resolver ecuaciones matemáticas, ni escribir poesía, ni fabricar ordenadores, ni elaborar tratados de metafísica.

… “descendemos de los monos” y “tenemos un antepasado común con los monos” no son contradictorios, ni siquiera uno es más correcto que el otro, …
Como dice Stephen Hawking, “sólo somos una especies avanzada de monos en un planeta menor de una estrella muy normal, pero podemos comprender el Universo y eso nos convierte en algo muy especial”. Pero, ¿cómo ha sido posible este salto evolutivo? ¿Dónde está la diferencia fundamental que nos ha permitido convertirnos en monos parlantes y pensantes, imaginativos e innovadores?
Cuando en una ocasión le hice esta pregunta al gran primatólogo Frans de Waal, su respuesta fue rotunda: “Nuestro cerebro es básicamente idéntico al de los simios, pero expandido. No hay nada nuevo salvo su tamaño, así que ahí debe residir la clave de lo que nos diferencia”. Según este científico, somos muy parecidos a los primates en nuestras emociones básicas y nuestras interacciones sociales, pero lo que nos distingue es sobre todo el lenguaje y todo lo que tiene que ver con nuestra capacidad para el pensamiento abstracto.
Hoy sabemos que la estructura cerebral de los primates humanos y no humanos es muy similar, pero también que el cerebro del ‘sapiens’ es tres veces mayor que el de los chimpancés y los bonobos. En este terreno, por lo tanto, está claro que el tamaño sí importa, y mucho.

Por eso mismo es tan importante un nuevo descubrimiento que se acaba de publicar en la última edición de la revista Science. Un equipo de investigadores alemanes del Instituto Max Planck de Biología Molecular ha logrado identificar un gen que poseemos los humanos, a diferencia de nuestros ‘primos’ simios, y que determina la expansión de nuestra corteza cerebral, la sede de nuestras capacidades lingüísticas e intelectuales. Al inyectar este gen en embriones de ratón, se comprobó que el tamaño de sus cerebros aumentaba de manera muy significativa e incluso adquiría los típicos pliegues de nuestra materia gris.
Probablemente éste no sea no sea el único ingrediente del ADN que explique algo tan complejo como la inteligencia del ‘sapiens’. Pero sin duda hoy estamos más cerca de descubrir el secreto de lo que nos hace humanos y comprender por qué -como ha escrito Oliver Sacks en su conmovedora despedida– podemos disfrutar del privilegio de ser “animales pensantes”.
















Totales: 84.150.774
Conectados: 56


























