miércoles, 24 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Partículas “bellas” de materia y antimateria

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cuántas generaciones de partículas existen? El modelo estándar no predice el número de generaciones de fermiones (quarks y leptones). Hoy conocemos tres generaciones, pero podrían existir más. Una cuarta generación dentro del modelo estándar estaría formada por dos quarks pesados t' y b' y dos leptones pesados \tau' y \nu'_\tau. Cualquier otra opción implicaría física más allá del modelo estándar. En este caso SM4 sustituiría a SM3, como SM3 sustituyó a SM2 en los 1970. (Fuente Francis (th)E mule Science’s News).

Pero hablemos de partículas “bellas” de materia y antimateria. Así se titula un magnifico artículo de Don Alberto Ruiz Jimeno, miembro del Grupo de Altas Energías del Instituto de Física Moderna Universidad de Cantabria y Jefe del Grupo de Altas Energías. En él nos dice que:

Tevatron

El resultado procede del análisis de CDF de miles de millones de colisiones de protones y antiprotones producidos en el colisionador Tevatron del Fermilab. De acuerdo con la Teoría de la Relatividad de Einstein, energía es igual a masa, por lo que esas colisiones de alta energía pueden lanzar a la existencia a partículas subatómicas masivas no vistas en nuestro mundo cotidiano. Los físicos intentan entonces identificar esas partículas estudiando las combinaciones de partículas más familiares en las que decaen.

“Nuevos bariones constituidos por tres Quarks, como los protones, pero conteniendo el quarks b (“belleza”) han sido observado en el experimento CDF del Acelerador del Tevatrón de protones y antiprotones. Por otra parte (nos dice), se ha observado por primera vez la oscilación de los mesones B, entre materia y antimateria. Dado que el artículo puede tener un alto interés para ustedes, he creído positivo transcribirlo aquí para gozo del personal que, con estos nuevos conocimientos (como me pasó a mí), podrán aumentar los suyos.

La física de partículas elementales tiene por objeto el estudio de los constituyentes más elementales de la materia y de las fuerzas fundamentales que rigen su comportamiento. La dinámica de estos bloques fundamentales viene formulada por la mecánica cuántica relativista.

El denominado Modelo Estándar establece que los bloques elementales de la materia tienen un momento magnético intrínseco (spín) de valor ½, denominándose fermiones por verificar las leyes de la estadística cuántica que formularon Fermi y Dirac a comienzos del siglo XX. A su vez, las fuerzas fundamentales vienen determinadas por el intercambio de cuantos de energía, con spin 1 (salvo el hipotético gravitón que tendría spin 2), llamado bosones al verificar las leyes estadísticas cuántica establecidas por Bose y Einstein, en el mismo siglo XX.

Los Bosones de interacción son el fotón, causante de la interacción electromagnética; los bosones vectoriales W+, W y Z0, causantes de la interacción nuclear débil; los ocho tipos de Gluones que confinan a los Quarks en hadrones (como el protón o el neutrón) a causa de la interacción fuerte nuclear, y el gravitón u onda gravitacional que explicaría la interacción gravitatoria. La fuerza gravitacional es despreciable a escala subatómica, pero es la dominante a grandes escalas. Su portador aún no ha sido observado; de hecho, su existencia requeriría una teoría cuántica de la gravitación, que aún no ha sido formulada.

Los fermiones de materia se denominan quarks o leptones, siendo los primeros los que están sometidos a los cuatro tipos de interacciones y los segundos los que no están sometidos a la interacción nuclear fuerte; en cualquiera de los casos, la interacción electromagnética solo afecta a las partículas que poseen carga eléctrica y la interacción gravitatoria a las que poseen masa.

Los quarks son de seis tipos o sabores,  así como los leptones. Unos y otros se clasifican en familias o generaciones, siendo la más ligera la constituida por los quarks y los leptones electrón y neutrino electrónico. Los nucleones, protón y neutrón, tienen la estructura de quarks, respectivamente uud y udd. Los átomos tienen un núcleo interno constituido por nucleones y electrones orbitando en torno al mismo.

El resto de quarks y leptones constituyen materia exótica, siendo producidos en los aceleradores de partículas y en la radiación cósmica, pero formaban parte de la materia original del Universo primitivo. Los quarks pueden tener, además, tres tipos de carga fuerte o “color”.

Además existen otros doce sabores correspondientes a la antimateria, en forma de anti-quarks y anti-leptones, con las mismas masas que los quarks y leptones correspondientes, pero con sus cargas invertidas. No se ha observado antimateria en el Universo actual, pero el Universo primigenio tenía igual cantidad de materia que de antimateria. Toda la antimateria actual es producida en los choques de partículas aceleradas, como consecuencia de la transformación de energía en pares materia-antimateria.

La ecuación cuántica relativista que gobierna el comportamiento de los fermiones es la ecuación de Dirac, debida al famoso físico inglés. Las soluciones de dicha ecuación incluyen las denominadas partículas de antimateria, que poseen la misma masa que la partícula correspondiente, pero tienen todas sus “cargas” internas, como la carga eléctrica, con el signo opuesto. Así por cada quark tenemos un antiquark y por cada leptón un antileptón. Cuando un fermión y su correspondiente antifermión se encuentran se aniquilan mutuamente, convirtiéndose en energía y, a la viceversa, si tenemos energía superior a la suma de las masas de fermión y antifermión, puede convertirse en un par fermión-antifermión.

El 7 de agosto de 1912, el físico austriaco Victor Franz Hess descubrió esta potentísima fuente de energía llegada del espacio, lo que años después le supuso el premio Nobel ABC.ES / MADRID V.F. SOCIETY    Víctor F. Hess, en un globo entre 1911 y 1912.

La historia de la Física de Partículas debe mucho al descubrimiento de los rayos cósmicos, realizada por el físico austríaco Francis Hess, en 1912, y apodados como tales por el físico americano Robert Millikan, en 1925. Los experimentos de Hess, utilizando globos aerostáticos, concluyeron que la cantidad de radiación crecía por encima de los 2000 metros de altura y la fuente de los mismos eran el Sol y otras fuentes procedentes del firmamento.

A partir de esa fecha y hasta mediados del siglo XX, gracias a los experimentos con rayos cósmicos, el número de tipos diferentes de partículas observadas, que previamente se reducían al protón y el electrón, se multiplicó, creándose un auténtico caos que obligó a pensar en esquemas de clasificación de las mismas.

File:Schéma de principe du synchrotron.jpg

                                                                                      Esquema de un sincrotrón

El sincrotrón es un tipo deacelerador de partículas.  Se diferencia de otros aceleradores en que las partículas se mantienen en una órbita cerrada. Los primeros sincrotrones se derivaron del ciclotron. que usa un campo magnético constante para curvar la trayectoria de las partículas, aceleradas mediante un campo eléctrico también constante, mientras que en el sincrotrón ambos campos varían. La velocidad máxima a la que las partículas se pueden acelerar está dada por el punto en que la radiación sincrotrón emitida por las partículas al girar es igual a la energía suministrada. Los sincrotrones también se utilizan para mantener las partículas circulando a una energía fija; en este casos reciben el nombre de «anillos de almacenamiento».

En 1947, los físicos del Laboratorio Lawrence Berkeley, de California, construyeron el primer gran acelerador, un ciclotrón, comenzando la era de los grandes aceleradores de partículas, que continuaron descubriendo nuevos tipos de las mismas, de modo que, en 1960, había cientos de tipos de partículas observadas, sin que hubiera, aún, un esquema de clasificación adecuado. Este fue desarrollado durante la década de 1960, en la que el análisis de las colisiones de partículas, y las propiedades de los diferentes tipos de interacción observadas, establecieron la base para la construcción del Modelo Estándar.

    Sí, las fuerzas fundamentales, o, interaciones… ¡Están presentes en todas partes por el Universo! Son las que marcan el ritmo.

Las leyes que rigen el comportamiento de las interacciones fundamentales y sus propiedades de simetría permitieron establecer un marco de clasificación de los hadrones (partículas compuestas por quarks, como es el caso del protón) que pueden ser de dos tipos: Bariones, si en su constitución tenemos tres quarks, o mesones, si si están constituidos de un quark y un antiquark.

En realidad, la dinámica de los hadrones está determinada, esencialmente, por la interacción nuclear fuerte, de modo que los quarks constituyentes son los quarks de “valencia”, en analogía con los electrones de valencia de los átomos (los que fijan sus propiedasdes químicas). En la dinámica de la interacción fuerte nuclear hay un continuo intercambio de Gluones entre los quarks y reacciones de producción y aniliquilación de quarks y antiquarks mediante Gluones.

Esta dinámica es debida a la existencia de una propiedad intrínseca de los quarks que denominamos “color”, que es intercambiada en las reacciones de Quarks y Gluones. Los hadrones son,  globalmente,  neutros de color (como los átomos son neutros de carga eléctrica) y es tan fuerte y característica la interacción que los quarks están confinados en unas dimensiones especiales inferiores al tamaño de los núcleos de los átomos, siendo paradójicamente casi libres en el interior de los hadrones (libertad asintótica de los quarks).

Confinamiento-y-libertad-asintotica-8.jpg

      La fuerza nuclear fuerte es la más potente de la Naturaleza y mantiene el núcleo de los átomos unidos

El Modelo Estándar ha sido comprobado desde su desarrollo formal, a mediados de 1960, y sus parámetros han sido medidos con extraordinaria precisión, gracias al desarrollo de experimentos muy potentes, entre los que destacan los realizados en el acelerador LEP (“Large Electrón Positrón”) del CERN ( Centro Europeo de Física de Partículas, en Ginebra), durante la última década del siglo XX, y del Tevatrón del Laboratorio Fermilab (Chicago, USA), aún en funcionamiento.

A continuación viene una referencia al LHC que, a estas alturas está sobrepasada por conocer todos nosotros lo que ha pasó en su inauguración y sus primeras pruebas. Así que, no me parece oportuno plasmar aquí esa referencia que conoceremos de primera mano cuando sucedieron los hechos y toda la prensa los publicó.

emilio silvera

¿Dónde están las respuestas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Einstein y las cosas que decía »

René Descartes, filósofo, matemático y físico  francés, considerado el padre de la filosofía moderna, así como uno de los nombres más destacados de la revolución científica. El método científico ( del latín scientia = conocimiento; camino hacia el conocimiento) es un método de investigación usado principalmente en la producción de conocimiento en las ciencias. Para ser llamado científico, un método de investigación debe basarse en la empírica y en la medición, sujeto a los principios específicos de las pruebas de razonamiento.  El método científico es: «un método o procedimiento que ha caracterizado a la ciencia natural desde el siglo XVII, que consiste en la observación sistemática, medición, experimentación, la formulación, análisis y modificación de las hipótesis»
El método científico está sustentado por dos pilares fundamentales. El primero de ellos es la reproducinilidad, es decir, la capacidad de repetir un determinado experimento, en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos (por ej. en forma de artículo científico). El segundo pilar es la refutabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada o refutada. Esto implica que se podrían diseñar experimentos, que en el caso de dar resultados distintos a los predichos, negarían la hipótesis puesta a prueba.

 

¡Son posibles tántas cosas!

Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”

Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.

 

 

 

 

“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasíón los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!

La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”

Einstein se pasó los últimos treinta años de su vida en la bíusqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.

 

 

 

 

Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

 

 

 

 

La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

 

 

 

El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relativia! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones,  o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.

 

 

 

 

“El espacio-tiempo es una estructura suave, al menos así lo sugiere un nuevo estudio, anotando una posible victoria para Einstein sobre los teóricos cuánticos que vinieron después de él.”

 

 

teoría_de_cuerdas.jpg

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

Pero… ¿somos en verdad tan insignificantes

emilio silvera

Descubren en Groenlandia el fósil más antiguo del planeta

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Geología: Reportaje publicado en “El Español”

 

Resultado de imagen de En Groenlandia la roca más antigua de la Tierra

El pedazo de roca más antigua del planeta

 

Las rocas más antiguas ocultan restos microbianos de 3.700 millones de años, lo que adelanta en 220 millones los restos vivos más antiguos hallados en la Tierra.

 

 

Resultado de imagen de En Groenlandia la roca más antigua de la Tierra

 

Allen Nutman y Abigail Allwood sostienen el estromatolito. Yuri Amelin

Las rocas más antiguas jamás halladas en nuestro planeta forman parte del llamado cinturón de Isua, al oeste de Groenlandia. Ahora, un equipo de científicos liderado por Allen Nutman, de la universidad australiana de Wollongong, ha publicado esta semana en Nature que esas rocas contienen el fósil más antiguo jamás encontrado, una capa microbiana que podría marcar el inicio de la vida en nuestro planeta, aunque ya les advertimos que este hallazgo traerá polémica.

Nuestro planeta -ya saben- tiene 4.500 millones de años de antigüedad, pero pasó los primeros millones en estado de formación. Durante aquellas primeras eras, llamadas Arcaica y Hádica, la corteza era principalmente roca fundida, y por eso no queda prácticamente nada de aquella superficie que se solidificó por primera vez.

Goose Bay Location.png

Existen dos excepciones principales, el macizo del labrador sobre el que se asientan Groenlandia y buena parte del norte de Canadá y los gneises (rocas metamórficas) del monte Narryer en Australia occidental. Aquí se han encontrado las piedras más antiguas en buen estado de conservación, y es gracias a estos dos sitios que comprendemos bien lo que ocurrió en la Tierra antes de la aparición del primer ser viviente.

“Estas no son el tipo de rocas que un paleobiólogo consideraría prometedoras para hallar signos de vida, dado que no son sedimentarias como aquellas que cobijan a la mayoría de los registros fósiles de la Tierra”, explica Abigail Allwood, astrobióloga del Instituto de Tecnología de California que ha participado en el trabajo de Nature. “En cambio, son metamórficas, lo que significa que han sido, en gran parte, deformadas y alteradas por el calor y la presión a gran profundidad”.

Una rareza geológica

 

 

Sección lateral de estromatolitos antiguos.

 

Sin embargo, Nutman descubrió una rareza. En un área recientemente despejada por el creciente deshielo que afecta a Groenlandia aparecieron rocas que habían sobrevivido razonablemente bien al tiempo geológico y todavía conservaban intactas algunas de aquellas primeras capas de sedimento. En concreto, encontraron comunidades de microorganismos sedimentados, llamadas estromatolitos, de entre 1 y 4 centímetros de espesor que resultaron tener 3.700 millones de años.

El anterior candidato a ser vivo más antiguo de la Tierra, otro estromatolito encontrado hace unos años en el cantón Pilbara, al oeste de Australia, tenía entre 3.350 y 3.480 millones de años, por lo que el récord de antigüedad ha quedado batido por 220 millones de años.

“Los estromatolitos del cinturón de Isua crecieron en un entorno marino de poca profundidad”, explica en el trabajo Allen Nutman, quien añade que la presencia de éstos demuestra “el establecimiento de una producción de carbonatos marinos con secuestro biótico de CO2”.

Estromatolitos en Shark Bay, al oeste de Australia.
                                         Estromatolitos en Shark Bay, al oeste de Australia

Existen estudios genéticos moleculares que sostienen que la vida pudo comenzar incluso antes, en el eón Hádico, hace más de 4.000 millones de años, justo tras el intenso bombardeo de asteroides que sufrieron la Tierra y la Luna durante su infancia planetaria. La dificultad es, como citábamos antes, encontrar pruebas de esta época.

Sin embargo, haber atrasado en 200 millones de años el primer registro fósil del planeta puede tener implicaciones muy interesantes. Por ejemplo, como indica Allwood, “nuestra comprensión de la naturaleza de la vida en el Universo está determinada por el tiempo que tardó la Tierra en establecer las condiciones planetarias ideales para la vida”, explica. Y lo primero que viene a la mente tras este hallazgo es Marte.

Resultado de imagen de La nave Curiosity encontró en 2014 rocas formadas en un agua químicamente apta para albergar vida, pero... ¿tuvo ese agua el tiempo suficiente como para hacerlo en el Planeta Rojo?

El planeta rojo pudo estar helado hace millones de años

La nave Curiosity encontró en 2014 rocas formadas en un agua químicamente apta para albergar vida, pero… ¿tuvo ese agua el tiempo suficiente como para hacerlo en el Planeta Rojo? Como dice la investigadora de Caltech, tras este hallazgo tenemos un ejemplo de vida con la que compararlo. “Y si las estructuras de Isua son de hecho microbianas, entonces la respuesta de ese ejemplo es que sí”.