domingo, 11 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando pensamos en la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

 A medida que examinamos volúmenes cada vez mayores del Universo, la densidad de material que encontramos sigue disminuyendo hasta que salimos de las dimensiones de los cúmulos de galaxias. Cuando llegamos a dicha escala, la acumulación de materia empieza a desvanecerse y se parece cada vez más a una minúscula perturbación aleatoria de un mar uniforme de materia, con una densidad de aproximadamente un átomo por cada metro cúbico.

cumulos galaxias 05 1280x800 La jerarquía del Universo: a mayor tamaño, menor densidad.

 A medida que buscamos en las mayores dimensiones visibles del Universo, encontramos que las desviaciones de la uniformidad perfecta de la materia y la radiación se quedan en un bajo nivel de sólo una parte en cien mil. Esto nos muestra que el Universo no es lo que se ha llegado a conocerse como un fractal, en donde la acumulación de materia en cada escala parece una imagen ampliada de la escala superior siguiente.

Que el Universo posea una densidad muy baja no es un accidente. La expansión del Universo relaciona su tamaño y su edad con la atracción gravitatoria del material que contiene. Para que el Universo se expanda el tiempo suficiente para permitir que los ladrillos de la vida se formen en los interiores de las estrellas debe tener una edad de miles de millones de años. Esto significa que debe tener una extensión de de miles de millones de años luz y poseer una densidad de materia promedio muy pequeña y una temperatura muy baja.

Siempre hemos tratado de crear una teoría nueva para describir la naturaleza cuántica de la gravedad y por el camino ha emergido un nuevo significado para las unidades naturales de Planck: Masa de Planck, Longitud de Planck, Tiempo de Planck, Temperatura de Planck.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

Un estudio reveló que la complejidad de los universos siempre aumenta con el tiempo y que nunca se reduce, independientemente de cómo se desarrollan los modelos. Si consideramos el Universo como un Sistema cerrado, su entropía aumentará y el Caos se irá haciendo el dueño de la situación.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

http://apod.nasa.gov/apod/image/0310/galaxies_sdss_big.jpg

Después de identificar las galaxias en imágenes bidimensionales como la mostrada arriba a la derecha, se mide la distancia para crear el mapa tridimensional. El SDSS actualmente reporta información en tres dimensiones para más de 200 000 galaxias, rivalizando con el conteo de galaxias en 3D del mapa celeste de Campo en Dos Grados.

C:\Enviar\fondoastro.gif

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

En una sencilla y simple mirada, podemos encontrar la Belleza de todo un universo y, adentrarnos en ese brillo sugerente de la pupila que nos adentra hacia el interior de un Cosmos de inusitados misterios y lleno de promesas de cosas maravillosas que, como en el universo, allí podemos encontrar. Se puede dar la paradoja de que, allí, dentro de una simple mirada, podamos encontrar el infinito.

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

         La vida que surgió en el planeta Tierra a partir de los materiales “fabricados” en las estrellas de los que se formaron los mundos que, situados en el lugar adecuado, con agua líquida, océanos y atmósfera, pudieron darse las condiciones adecuadas para la formación de esa “sopa primordial” o, protoplasma vivo del que surgiría aquella primera célula replicante que dio el primer paso a la aventura de la Vida.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

                En lugares como este se forman los elementos de la vida

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Esta marca oscura y estirada es la última cicatriz de impacto de Júpiter, un penacho de restos creado mientras un pequeño asteroide o un cometa se desintegraba tras zambullirse en el interior de la atmósfera del gigante gaseoso.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta. La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

Despues de los Dinosaurios surgieron otras formas de vida que, evolucionadas, llegaron hasta aquí (arriba la muestra).

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

       La atmósfera actual requirió un largo proceso

Muchos son los parámetros a tener en cuenta para llegar a la formación de nuestra atmósfera planetaria y todo el ecosistema que tenemos y del que podemos disfrutar. Claro que, nadie cae en la cuenta de que, eso lo tenemos y es posible, gracias a unos “seres” infinitesimales,los procariotas que realizan el “milagro”.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

aurora_australis_20050911

                                              Aurora boreal

Formacion de Auroras Boreales y Australes, Cinturones de Van Allen, Ciclo del Agua, Formacion de Nubes, Tipos de Nubes, Cristales de Hielo y Nieve, Niebla, Vientos, Ciclones y Anticlones, Formacion de Tornados, Formacion de Huracanes, Relampagos, Refraccion de la Luz, Corrientes Oceanicas, Capa de Ozono, Patrones de Temperatura, Patrones Precipitacion, Origen de la Atmosfera, Termometro, Termimetro, Barometro, Pluviometro.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

Bacteriofagos: la forma de vida más común de la Tierra

Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Human.svg

Desde la extinción del Homo hace 45 000 años, el Homo sapiens es la única especie conocida del género Homo que aún perdura. La imagren de arriba estaba en una placa llevada a bordo de la Pioneer 11 y Vyager I y II,  representando a un hombre y una mujer con la intención de darnos a conocer a posibles inteligencias que existan en otros mundos fuera de nuestro Sistema solar.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

                            Como decía Peter Kolosimo… “Hay otros mundos pero están en este”

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.

          Miles de millones de galaxias formadas a lo largo de miles de millones de años

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

El ser humano ha hecho un largo recorrido para ahora sentirse insignificante.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos  β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  aF > 0,3 a½, los elementos como el carbono no existirían.

átomo de carbono

La molécula de Carbono que hace posible la Vida en nuestro mundo

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

¡Es todo tan complejo!

emilio silvera

Hay cosas en las que no pensamos

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosas curiosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Qué pasaría si la Tierra dejara de girar?

 

¿Alguna vez te has preguntado qué pasaría si la Tierra dejara de girar? Pues bien, antes de nada debemos de saber que nuestro planeta gira a una velocidad de 465 metros por segundo, medición realizada en el ecuador. Aunque es prácticamente imposible que esto ocurra siempre viene bien estudiar supuestos para conocer un poco mejor como funciona la Tierra.

Si la Tierra dejara de girar ahora, saldríamos volando

  • Sería algo similar a ir en coche a gran velocidad y chocar contra un muro. En ese momento todo lo que se encontrara en la superficie de la Tierra recibiría un impulso y solo las personas que estuvieran cerca de los Polos sobrevivirían (debido a que su velocidad de rotación es menor). También tendrían posibilidades de sobrevivir las personas que estuvieran en aviones, aunque las tormentas y fenómenos que se formarían dificultarían que el avión se pudiera mantener volando.

VER TAMBIÉN: ¿Cómo anunciar el fin del mundo?

  • Se generarían además vientos de tal intensidad (similares a los del impacto de una bomba atómica) que generarían incendios en gran parte del planeta. Si no fuera suficiente, ese viento produciría una erosión de tales dimensiones que arrasaría la superficie terrestre.

 

Foto: Taringa

  • 1 día duraría un año: Los días durarían mucho más que lo que duran ahora, concretamente equivaldría a los 365 días actuales. Habría eternamente 6 meses de oscuridad y otros 6 de luz.

“¿Qué pasaría si la Tierra dejara de girar?”

  • La Tierra se convertiría en una esfera perfecta: Los movimientos de la Tierra provocan que nuestro planeta no sea una esfera perfecta, sin embargo, si se parara la Tierra, los océanos se redistribuirían en el planeta inundando kilómetros de ciudades costeras. Además, el agua se acumularía en los Polos al no existir la inercia del giro y el centro se quedaría sin agua.
  • Desaparecería el campo magnético de la Tierra: La radiación solar destruiría la escasa vida que pudiera quedar y mientras en medio planeta las temperaturas serían infernales, la otra mitad quedaría completamente helada.

 

Foto: es.gizmodo.com

Como has visto, si la Tierra dejara de girar las consecuencias serían terribles y catastróficas, sin embargo, podemos estar tranquilos y es que es prácticamente imposible que pueda llegar a ocurrir.

Te puede interesar:

Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentale son


Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métrico. Einstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

matriz

Gracias al Tensor de Rieman, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado.

 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendidmos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aprecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujerods negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera

Estructuras fundamentales de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                    Una molécula de Agua y otra de Amoníaco

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

http://www.nfcol.net/NEUROCOL_files/celula.jpg

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad y ahora están en nosotros y en todos los objetos del universo, chicos o grandes, todo lo material está hecho de Quarks y Leptones desde una bacteria hasta una galaxia. Por supuesto, también nuestro cerebro y las neuronas que crean pensamientos.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera

Seguimos avanzando… ¡A tientas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia ABC

¿Todas las galaxias, en el centro de una esfera de agujeros negros?

 

Una nueva investigación sugiere que lo que llamamos materia oscura podrían ser, en realidad, agujeros negros primordiales

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente – NASA/JPL-Caltech/A. Kashlinsky (Goddard)

Todas las galaxias, incluída la nuestra, podrían estar completamente rodeadas por una enorme esfera de agujeros negros. Esa es la extraordinaria conclusión de un equipo de investigadores del Centro Espacial Goddard, de la NASA, que ha sugerido la posibilidad de que la misteriosa y hasta ahora esquiva materia oscura esté hecha, en realidad, de “agujeros negros primordiales“, esto es, formados durante el primer segundo tras el Big Bang.

Para Alexander Kashlinsky, director de la investigación, la idea es consistente con lo que observamos en el fondo cósmico, tanto en la longitud de onda del infrarrojo como en la de los rayos X, y puede explicar también las masas inesperadamente elevadas de los dos agujeros negros en proceso de fusión observadas el año pasado, durante la primera detección de ondas gravitacionales. El estudio se acaba de publicar en The Astrophysical Journal Letters.

“Este estudio -explica el investigador- constituye un gran esfuerzo para unir toda una serie de ideas y observaciones y ver lo bien que encajan. Y resulta que encajan sorprendentemente bien. Si esto es correcto, entonces todas las galaxias, incluyendo la nuestra, serían parte de una gran esfera de agujeros negros, cada uno de ellos de aproximadamente 30 masas solares”.

Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo. Los científicos reportaron una irregularidad excesiva en ese brillo, y concluyeron que probablementese se debía a la suma de los brillos de las primeras fuentes de luz que iluminaron el Universo primitivo, hace más de 13.000 millones de años. Estudios posteriores confirmaron que este brillo del fondo cósmico de infrarrojos (CIB, por sus siglas en inglés) tiene la misma e inesperada estructura irregular también en otras partes del cielo.

En 2013, otra investigación hizo lo mismo, pero esta vez observando el brillo del fóndo cósmico en el rango de los rayos X (CXB), utilizando el telescopio espacial Chandra, y en la misma porción de cielo en la que se había medido el brillo en el infrarrojo. Las primeras estrellas, que emiten la mayor parte de su radiación en el espectro visible y en el ultravioleta, no contribuyen en exceso al CXB.

El resultado fue que los brillos irregulares en el fondo cósmico coincidían muy bien tanto en los rayos X como en el infrarrojo. Y el único objeto conocido capaz de ser lo suficientemente luminoso en cualquier rango de energía es un agujero negro. Los investigadores, pues, concluyeron que los agujeros negros primordiales, los que se formaron durante el Big Bang, debieron de ser muy abundantes entre las primeras estrellas, tanto como para constituir al menos una de cada cinco de las fuentes que contribuyen al CIB.

No es materia oscura, sino agujeros negros

Y aquí es donde entra en juego la materia oscura, cuya auténtica naturaleza sigue siendo uno de los problemas no resueltos más importantes de la astrofísica. Cinco veces más abundante que la materia ordinaria, de la que están hechas todas las galaxias, estrellas y planetas que podemos ver, la materia oscura no “brilla”, es decir, no emite radiación, en ninguna longitud de onda, por lo que resulta indetectable para cualquiera de nuestros instrumentos. Sabemos que está ahí, sin embargo, porque su fuerza gravitatoria obliga a la materia ordinaria (la que sí podemos ver) a moverse de formas que, sin la existencia de esa masa invisible, serían imposibles.

Hasta ahora los físicos han tratado de construir modelos teóricos que puedan explicar la materia oscura con una partícula exótica muy masiva, pero todas las pruebas llevadas a cabo para encontrar esa hipotética partícula han fracasado sin excepción.

Según Kashlinsky, “estos estudios están proporcionando resultados cada vez más sensibles, reduciendo lentamente el abanico de parámetros donde las partículas de materia oscura se podrían ocultar. Pero el fracaso a la hora de encontrarlas ha llevado a un renovado interés por el estudio de lo bien que los agujeros negros primordiales -agujeros negros formados en primera fracción de segundo del universo- podrían funcionar como materia oscura”.

Los físicos creen que hay varias formas en que el universo temprano, muy caliente y en rápida expansión, pudo producir agujeros negros primordiales en la primera milésima de segundo tras el Big Bang. Y cuanto más tarde se pusiera en marcha este mecanismo, mayores serían los agujeros negros “fabricados” por el Universo recién nacido. Dado que la “ventana” para crear estos agujeros negros dura apenas una fracción de segundo, los agujeros negros primordiales, según los investigadores, deberían de estar todos dentro de un estrecho rango de masas.

Ondas gravitacionales, la primera pista

 

El pasado 14 de septiembre, los observatorios LIGO (Laser Interferometer Gravitational-Wave Observatory) detectaron las ondas gravitacionales causadas por la fusión de dos agujeros negros a 1.300 millones de años luz de distancia. Fue la primera (y por ahora la única) vez que se lograba detectar las ondas gravitacionales que había predicho Einstein hace un siglo, pero también fue la primera detección directa de un agujero negro en toda la historia de la Ciencia. La señal captada por los investigadores aportó información sobre las masas de los dos agujeros negros en proceso de fusión: 29 y 36 masas solares, respectivamente. Valores inesperadamente grandes y, sobre todo, sorprendentemente similares.

“Según cuál sea el mecanismo que está actualdo -explica Kashlinsky- los agujeros negros primordiales podrían tener propiedades muy similares a las detectadas por LIGO. Si asumimos que ese es el caso, y que LIGO captó la fusión de dos agujeros negros nacidos en el universo temprano, entonces podemos estudiar las consecuencias que esto tiene en nuestra comprensión de cómo el cosmos, en última instancia, evolucionó”.

En su nuevo trabajo, Kashlinsky analiza lo que podría haber sucedido si la materia oscura realmente consiste en una gran población de agujeros negros similares a los detectados por LIGO. Esos agujeros negros, por ejemplo, distorsionaron la distribución de la masa en el universo temprano, añadiendo una pequeña fluctuación que tuvo consecuencias cientos de millones de años más tarde, cuando las primeras estrellas empezaron a formarse.

Durante los primeros 500 millones de años de existencia del Universo, la materia ordinaria estaba demasiado caliente como para unirse y formar las primeras estrellas. Pero la materia oscura no resultó afectada por la temperatura ya que, debido a su propia naturaleza, no depende de la radiación e interactúa fundamentalmente a través de la gravedad. Agregándose a causa de esta atracción gravitatoria, la materia oscura se agrupó primero en estructuras llamadas “mini halos”, lo que proporcionó una serie de “semillas gravitacionales” alrededor de las cuales la materia ordinaria pudo ir acumulándose. Así, el gas caliente (la materia ordinaria) se fue acumulando alredodor de los “mini halos”, dando lugar a “paquetes” de gas lo suficientemente densos como para colapsar sobre sí mismos y formar las primeras estrellas.

Kashlinsky observa que si efectivamente los agujeros negros son la materia oscura, el proceso de formación estelar sucedería más rápidamente y se producirían con más facilidad las irregularidades en la luminosidad del fondo cosmico observadas en el rango de los infrarrojos por el telescopio Spitzer. Y esto sería así incluso si solo una pequeña parte de los “mini halos” estuviera produciendo estrellas.

Por supuesto, los agujeros negros también capturarían una parte del gas caliente que era atraído lor los “mini halos”. Esa materia, se recalentaría según se fuera acercando a los agujeros negros y terminaría, también, por producir rayos X. Juntas, la luz infrarroja procedente de las primeras estrellas y los rayos X emitidos por la materia atraída por los agujeros negros, producirían los mismos efectos que los científicos han observado en los brillos en CIB y el CXB.

De vez en cuando, además, alguno de estos agujeros negros primordiales pasaría lo suficientemente cerca de otro como para ser capturado por su gravedad y formar un sistema binario. Durante eones, los dos agujeros negros de esos sistemas binarios se orbitarían mutuamente, para terminar fundiéndose en uno solo, como el encontrado el año pasado por los detectores LIGO.

“Las futuras observaciones de LIGO -afirma Kashlinsky- nos dirán mucho más sobre la población de agujeros negros en el Universo, y no hará falta demasiado tiempo para saber si el escenario que propongo se sostiene o no”.