Abr
7
Algún día, lejano en el futuro, sabremos lo que la Conciencia es
por Emilio Silvera ~
Clasificado en conciencia ~
Comments (1)
Nuestra estrategia para explicar la base neuronal de la conciencia consiste en centrarse en las propiedades más generales de la experiencia consciente, es decir, aquella que todos los estados conscientes comparte. De estas propiedades, una de las más importantes es la integración o unidad. La integración se rfiere a que el sujeto de la experiencia no puede en ningún momento dividir un estado consciente en una serie de componentes independientes. Es una propiedad que está relacionada con nuestra incapacidad para hacer conscientemente dos cosas al mismo tiempo, como, por ejemplo confeccionar un balance de cuentas mientras que al mismo tiempo que se mantiene una discusión sobre los agujeros negros.
El diagrama que podemos tener del cerebro-mente, sería una cosa así:
Otra propiedad clave de la experiencia consciente, y una que aparentemente contrasta con la anterior, es su extraordinaria diferenciación o informatividad: En cada momento podemos seleccionar uno entre miles de millones de estados conscientes posibles en apenas una fracción de segundo. Nos enfrentamos, pues, a la aparente paradoja de que la unidad encierra la complejidad.
El abanico y la variedad de la fenomenología consciente abarcan tanto como la experiencia personal y llegan tan lejos como la imaginación de cada persona: es el teatro privado de cada uno. Muchos son los libros que se han escrito con el propósito de categorizar el dominio de lo consciente y se han levantado incluso sistemas filosóficos enteros sobre la base de intentos por descifrar su estructura.
Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un ingente de estados conscientes …
Los estados conscientes se nos manifiestan en forma de perceptos sensoriales, de imágenes, de pensamientos, de discurso interios, de emociones y de sentimientos de voluntad, mismidad, familiaridad…Estos estados pueden producirse en cualquier combinación y subdivisión posible. Las percepciones sensoriales -los constituyentes de la experiencia consciente- se presentan en varias modalidades: vista, oido, tacto, olor, gusto…es la percepción de nuestro propio cuerpo (quinestesia) la sensación de la posesión del cuerpo a través de los sentidos que nos sitúan en el mundo y los mismo nos hablan de placer que de dolor. Sin embargo, no siempre damos a los sentidos la importancia que realmente tienen. Por ejemplo, cada uno de los sentidos tiene distintas vertientes y están provistos de una riqueza que nos lleva a una comprensión más elevada del mundo que nos rodea. La experiencia visual, por ejemplo, incluye el color, la forma, el movimiento, la profundidad.
Es la vista la que hace que en estado consciente, podamos valorar todos y cada uno de los matices presentes en la escena de arriba.
¿Que decir de la facultad del pensamiento? El pensamiento, el discurso interior y la formación consciente de imágenes nos recuerdan poderosamente que se puede construir una escena consciente incluso en ausencia de impresiones externas. Los sueños constituyen la demostración más palmaria de este hecho. Pese a ciertas peculiaridades, como la credulidad, la resolución y la pérdida de auto reflexión del que sueña, la ensoñación y la conciencia despierta son notablemente parecidas (“soñar despierto”). Los objetos visuales y las escenas “vividas” en el sueño, suelen ser reconocibles, el lenguaje es inteligible e incluso las historias que se desarrollan en los sueños pueden llegar a ser tan coherentes que, no en pocas ocasiones, muchas personas llegaron a tomarlas por reales.
Estar en otros mundos sin ausentarte de este
La Conciencia puede ser activa o pasiva y, según qué ocasión, le pedimos o no un esfuerzo extra. La mayor parte de las veces dejamos que las impresiones sensoriales tomen posesión libremente de nuestros estados sensoriales, sin prestar especial atención a esto o aquello, la conciencia es tan receptiva y amplia como natural y libre de esfuerzo cuando, por ejemplo, visitamos una ciudad y paseando disfrutamos de sus vistas. Por otra parte, cuando buscamos específicamente un punto concreto en el flujo constante de entradas sensoriales al que estamos expuestos, la percepción se convierte en una actividad orientada a la acción concreta de esa búsqueda.
La Plaza de las Cibeles de Madrid
Claro que, la experiencia consciente varía en intensidad; el nivel global de alerta puede variar desde la casi nula vigilancia del sopor hasta el estado hipervigilante de un piloto de guerra en acción, y la percepción sensorial puede ser más o menos vívida. También tenemos esa conocida habilidad llamada atención, que nos permite seleccionar o amplificar diferencialmente ciertas experiencias conscientes en detrimento de otras experiencias coetáneas..
Además, la conciencia se halla conectada y vinculada a ciertos aspectos de la memoria. De hecho, a menudo se equipara la memoria inmediata, que dura apenas una fracción de segundo, a la propia conciencia. Claramente, la memoria de trabajo -la habilidad de “tener presente” y manejar los contenidos conscientes, como los números de teléfonos, las frases y las posiciones en el espacio, durante unos segundos-, está estrechamente realcionada con la Conciencia.
Está claro que, en cada uno de nosotros y según en qué situaciones que representan nuestro teatro privado de cada día nos encontremos, podemos estar situados en escenarios cambiantes que, para bien o para mal, lo podríamos denominar “comedia”, “farsa” o “tragedia”, con una dramatis personal, el “yo” como protagonista. Y, así será hasta que caiga la cortina al final de la obra de la vida. Y, mientras la obra transcurre, cada uno de nosotros vive su “historia”personal de vivencias intranferibles que, en definitiva, serán las que conformen su mundo particular.
La Bailarina estudia los pasos y, dentro de “su mundo”, tiene unas sensaciones que su conciencia “archiva como experiencias personales. En sus mentes, están guardados los recuerdos de esos movimientos practicados una y mil veces, y, cuando los tiene que ejecutar, lo hace de manera automática y natural, son acciones recogidas en su memoria que sólo tienen que recuperar en el momento oportuno.
El vulcanólogo hace su trabajo como la bailarina el suyo. Sin embargo, las experiencias son distintas y las sensaciones de cada uno de ellos crean una química diferentes en sus cuerpos. La una puede estar exaltada, imbuida de una alta sensibilidad artística, mientras que el otro, expuesto a un peligro real, está inmerso en un mar de adrenalina y, ese momento se gravará en su mente y quedará imborrable para siempre.
Aunque vivamos aquí, no es cierto que aquí esté “todo” nuestro “mundo” que, en realidad, escapa de este que arriba vemos y llega hasta los confines de nuestra imaginación que, dicho sea de paso, sobrepasa los confines del Universo mismo. La Imaginación es un arma muy poderosa, y, si nada la para, si la Naturaleza permite su transcurrir evolutivo…¿En qué se podrá transformar?
Estamos inmersos en un mundo, en una Galaxia, en un Universo que (aunque creamos lo contrario), no hemos llegado a conocer. Nuestros sentidos (que se unifican para conformar nuestro “sentido común”), observan el entorno y perciben todos y cada uno de los mensajes que les llegan del exterior, nos dice cómo es el mundo que nos rodea, y, sin embargo, es nuestra Mente, la que sintetiza “esa realidad” percibida y la conforma según su estructura natural que la lleva a “comprender” esos mensajes exteriores “a su manera”, construyendo un “mundo” especial de una realidad adaptada a nuestra conveniencia y que, por ello, puede diferir la la verdadera realidad.
Nada es imposible para la Imaginación, siempre que nuestras mentes tengan la capacidad de crear ideas
Cualquier diccionario que podamos leer nos dirá que la ralidad es la existencia real y efectiva de una cosa, verdad, sinceridad, la totalidad de las cosas que existen (¿el Universo?) y de los hechos que suceden en el mundo -entendiendo por el mundo todo el universo-. Sin embargo, en nuestro Universo, nada resulta ser tan fácil. También existen realidades virtuales que no siempre están referidas a ordenadores y computación y que están referidas a la acción de producir una apariencia de realidad que permita al individuo tener la sensación de estar presente en ella. Pero,no poemos estar seguros de que, “nuestra realidad” sea la misma realidad de la naturaleza que nos acoge.El cine se encarga de construir escenarios irreales que, nos llevan a mundos de fantasía, o, nos señala otros que podrían ser.
¿Será su “ralidad” la misma realidad nuestra? Probablemente no. El que compartamos el mismo planeta no hace que todos tengamos las mismas percepciones, sensaciones, emociones, aspiraciones, alegrías, miedos, tristezas, penas, sentimientos, fuerza, personalidad, voluntad de hacer, fuerza para luchar, y, el caso de las conciencias está, no pocas veces, condicionado por factores que el individuo no pudo elegir. Claro que, muchas veces una simple mirada, nos puede transportar a otro mundo que, para muchos “será totalmente irreal”. Pero soñar… podemos todos, otra cosa será poder realizar los sueños.
Los pensamientos conscientes han ido evolucionando a medida que el hombre se acercó más y más a la Naturaleza y la fue conociendo más profundamente, y, tales conocimientos, nos acercaron a la consciencia de cómo eran las cosas sin divinidades, ni deidades que, por encima de nuestro mundo, podían regir las cosas.
Son variadas las hipótesis que circulan sonbre el tema, cuantan que, el origen real de la filosofía fue en un pueblo griego, ya que su rechazo de lo sobrenatural, de lo mágico son signos de una racionalidad que difícilmente podemos encontrar en otras formas de pensamiento. Nace alrededor del S.VII-VI a.C. como resultado de una nueva actitud ante el universo: el hombre no se conforma con las repuestas míticas, sino que busca respuestas a los secretos del universo con la única ayuda de su razón y su lógica. Este nuevo tipo de pensamiento se conoce como el paso del mito al logos. Fue Tales de Mileto el que comenzó esa historia, y, a él podríamos dar el mérito de haber desencadenado los primeros pasos hacia el conocimiento de la mente, toda vez que, conocer la Naturaleza es conocernos a nosotros.
En filosofía se habla de realismo que es una actitud opuesta al idealismo, según la cual, las cosas existen fuera e independientemente de la conciencia (el sentido común), que las capta pasivamente en el “conocimiento” que nunca trata de poner de su parte ningún elemento que las pueda desvirtuar. De esa manera, la filosofía trata de decirnos que, esa realidad que percibimos, podría no ser la realidad y que nuestros sentidos nos engañan a través de la mente, muchas veces (como nos decía Kike en elguna ocasión) para nuestro propio bien, ya que, no estamos preparados para soportar la cruda realidad del Mundo y a los peligros que estamos sometidos, lo que provoca una especie de salvaguarda que nos sitúa en ese “otro mundo” inexistente.
Cualquier mundo que podamos imaginar estarña allí, en algún lugar remoto de alguna galaxia perdida en la inmensadidad del Cosmos. Nada en el Universo es imposible y, si pudiéramos viajar a esas regionaes lejanas, con asombro veríamos que existe, todo lo que podamos imaginar… ¡Y mucho más!
No siempre, aunque lo parezca, es mágico lo que podamos pensar que, pudiera estar presente en mundos remotos que no hemos llegado a conocer. Nuestra imaginación es ilimitada pero, ¿Y la realidad? En cuántas formas se puede presentar ante nosotros para sorprendernos.
Nos valemos de muchas tretas para escapar a la realidad, y, un ejemplo es el Realismo Mágico, esa corriente literaria hispanoamericana que se da en la segunda mitad del siglo XX, que introduce elementos fantásticos dentro de una línea narrativa realista (García Márquez, A. Uslar Pietri, A. Carpentier y J. Rulfo y otros). Yo me quedo con la obra de J.L. Borges que, en su inmensa imaginación fue capaz de recrear un universo mágico dotado de absoluta coherencia. Su narrativa maneja con destreza y maestria lo insólito, pero no se trata de un simple juego con la fantasía, sino que el autor nos propone sutíles juegos mentales, ejercicios de imaginación que en realidad muestran profundas cuestiones metafísicas.
Si entendemos por realismo la representación detallada y precisa de la Naturaleza, es esta una tendencia artística que, a lo largo de la historia, se ha repetido en mopmentos y espacios geográficos muy diferentes, desde las pinturas rupestres de las cuevas. Sin embargo, el realismo no fue considerado un programa estético determinado hasta mediados del siglo XIX en Francia, donde constituyó la corriente dominante tanto en pintura como en literatura, y estuvo, además, en la base de la transición hacia el impresionismo y el simbolismo.
¿Quién podría negar la realidad de esta imagen?
Otro “Realismo” encuadra en lo Histórico y Social que sería muy largo de exponer aquí, un trabajo que tiene sus miras puestas en otro horizonte. En todo este contexto, existen otras muchas clases de “realismo” que tratan de representar distintas fasetas del mundo.
Todo ello, nos lleva a comprender “cuántas realidades” podemos imaginar en nuestras mentes, y, deducir que, la “realidad” como la teoría einsteniana, es relativa, ya que, lo que para nosotros puede ser una realidad para otros seres que podrían existir, la realidad sería otra muy diferente. Percibimos el mundo que nos rodea con los medios de que nos dotó la Madre Naturaleza, y, esos medios, marcan el límite de “nuestra realidad” que nunca será la realidad misma, sino la nuestra.
Para muchos, el único realismo de su vidas ha sido siempre el duro trabajo, si yo os contara.
Sin embargo, y, a pesar de que creo firmemente en la existencia de distintas realidades que dependen del observador, también creo en la existencia de una única realidad para todos. Pongamos como ejemplo, al electrón, esa partícula elemental de la familia de los leptones que, tan importante resulta ser para la configuración del mundo que conocemos, para la existencia der los átomos y de nosotros mismos.
El electrón tiene una masa en reposo (me) de 9, 109 3897 (54) x 10-31 kg y una carga negativa de 1,602 177 33(49) x 10-19 culombios. Esa realidad, aunque vinieran los sabios físicos de un planeta habitable situado en la estrella Resplandor de una Galaxia muy lejana, cuando hicieran los cálculos matemáticos y los experimentos necesarios, las cifras seguirían siendo las mismas, toda vez que, al tratarse de constantes fundamentales, ni la masa ni la carga pueden tener otra realidad distinta sea cual fuere el observador. Esto nos quiere decir que hay realidades que nunca cambian y, eso, nos puede traer alguna esperanza de que, alguna vez, podríamos conocer el Universo, tal como es.
Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos.
Sin embargo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros”, pudiera ser otro mundo distinto al que nosotros percibimos y, podrían “ver” cosas que nosotros no vemos.
Vivímos en nuestra propia realidad, la que forja nuestras mentes a través de los sentidos y la experiencia. Incluso entre nosotrosm mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de algo, sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.
No, no será mnada fácil despejar las incognitas presentes en esta inmensa complejidad que llamamos Mente. Creo de manera firme que, finalmente, todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “real”mente se producen en nosotros y que no siempre sabemos traducir ni comprender.
¡Qué complicado resulta ser todo! La química de la vida puede estar presente en cualquiera de esos pequeños mundos que nos rodean y,en los cientos o miles de estudios que se han realizado, la coincidencia es inmensa. La Vida estará presente en cientos de miles de mundos y su origen siempre resulta estar en las estrellas. Allí, en esos objetos brillantes del cielo, se forman los elementos complejos necesarios para que, mediante mecanismos que no hemos llegado a conocer, se estructuren en las diversas formas de vida que, en unos casos conocemos y en otros no. Lo único cierto es que nuestras consciencias van acaparando hechos y conocimientos que nos permiten llegar cada vez lejos en el saber del mundo.
Algunos tienen en sus mentes mundos imposibles
Si todos pudiéramos tener la misma visión de la realidad, el mundo en el que vivímos ¿sería mejor? No estoy seguro de eso. Sin embargo, y, por otra parte, parece que la Naturaleza ha querido que la cosa sea tal como es, es decir, diferentes maneras de percibir, y, esa divergencia de ideas sobre las cosas, es una riqueza que nos lleva a descubrir, a idear nuevas cosas, nuevas formas, nuevos caminos. De tener todos la misma percepción de las cosas, seríamos como robots, como programas de ordenador, y, la riqueza y frescura de ideas estarían ausentes.
Así que, amigos míos, sigamos cargando con elm peso de la Incertidumbre, nunca podremos saber cuál será esa realidad del mundo que incansables perseguimos. ¿Sabremos algún día determinar lo que es y lo que no es?
Para no saber, no sabemos ni nuestra propia realidad. No os habeis preguntado en alguna ocasión, ¿quién soy yo? Esa pregunta nos sumerge en un mar de dudas, ya que, todavía no he podido contestar a esa “sencilla” pregunta.
emilio silvera
Abr
7
El Universo y los pensamientos
por Emilio Silvera ~
Clasificado en Cosmología ~
Comments (1)

Está claro que el tiempo pasa y cada generación trata de saber lo que hicieron las que las precedieron. Los vestigios del pasado son muchos y, no siempre sabemos traducir sus mensajes pero, los estudiamos y procuramos llegar a explicaciones lógicas de lo que aquello pudo ser, y, para ello, nos transportamos a aquellos contextos del pasado, a las mentalidades de los pobladores que dejaron monumentos que, con una mezcla de lo religioso-astronómico, quería simbolizar lo que ellos creían.
Desde el Parque Nacional del Teide se puede conseguir una buena vista de nuestra Vía Láctea
La “infinitud” de la Vía Láctea, inconmensurable para nosotros, es sólo una más, de decenas de miles de millones que pueblan nuestro Universo. Así, nuestra Galaxia para nosotros “infinita”, es, sencillamente, un objeto más de los muchos que pueblan las regiones del Cosmos. Cientos de miles de millones de estrellas que brillan por todas partes, asombrosos enjambres de planetas repartidos por cientos de miles de sistemas planetarios, cuásares y púlsares, estrellas enanas blancas, marrones y negras, gigantes rojas, Nebulosas de increíbles dimensiones en las que nacen nuevas estrellas y mundos, explosiones supernovas y aguejros negros gigantes que engullen todo el material que pueda capturar… ¡El Universo! nunca dejará de asombrarnos, ni por su inmensidad, ni por su diversidad.
Utilizando una cámara nueva y más poderosa, el Telescopio Espacial Hubble, ha descubierto lo que parece ser el objeto más distante jamás observado, una proto galaxia pequeña a 13.200 millones -luz de distancia, que se remonta a tan sólo 480 millones de años después del nacimiento del universo o Big Bang. Es decir, nos ha traído una galaxia en formación a escaso tiempo del comienzo del tiempo.
Immanuel Kant llegó a la conclusión de que las galaxias eran universos-islas pero, él escribió primero que las nebulosas elípticas, ofrecían una visión que se podía asimilar a un “sistemade muchas estrellas” que se hallan a “enormes distancias”. Aquí, por primera vez se hizo un retrato del universo formado por galaxias a la deriva en la vastedad del espacio cosmológico. El libro de Kant, titulado Historia general de la naturaleza y teoría del cielo, fue publicado -si esta es la palabra apropiada- en 1755, pero su editor quebró, los libros le fueron confiscados para sus deudas y la obra de Kant, cayó en el olvido.
Los entusiasmos galácticos de Kant, a pesar de todo, contribuyeron a sensibilizar la mente humana a la riqueza potencial y la vastedad del universo. Pero el arrobamiento por sí solo por muy perspicaz que sea, es, un fundamento inadecuado para fundamentar una cosmología científica. Determinar si el universo está constituido realmente por galaxias requería hacer un mapa del universo en tres dimensiones, mediante observaciones muy exactas, si no menos arrobadoras, que la contemplación meditativa de Lambert y Kant.
Entró en escena William Herschel, el primer astrónomo que llevó a cabo observaciones agudas y sistemáticas del universo más allá del Sistema solar, donde está la mayor parte de lo que existe. De hecho, en la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.
El observatorio espacial Herschel ha facilitado a un grupo de astrónomos observar cinco galaxias muy lejanas gracias al efecto lente gravitatoria. Así, de alguna manera, y en memoria de Herschel, el Telescopio que lleva su nombre continñua su que fue fundamental
En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de , parece que ésto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica. Si es así, el Universo se expandirá para siempre y tendrá una muerte térmica: El frío desolador del Cero Absoluto (–273 ºC) donde ni los átomos se mueven.
Es curioso como Herschel, encontró su camino la plenitud siguiendo las huellas de Kepler y Galileo a través del puente que lo llevó de la Música a la Astronomía. La habilidad de Herschel como observador era también muy refinada; sabía utilizar los telescopios. Él decía: “Ver es un arte que es necesario aprender”.
“La luz de las estrellas fijas es de la misma naturaleza [que] la luz del Sol” nos decía Newton, mientras que E. Hubble, comentaba que: “Las observaciones siempre involucran una teoría”. Ambos llevaban razón. Surgieron dos escuelas de pensamiento sobre la naturaleza de las “nebulosas elípticas” que predominaron en el siglo XIX. Una de ellas, la teoría del universo-isla de Kant y Lambert- la expresión es de Kant-, sostenía qwue nuestro Sol es una de las muchas estrellas de una Galaxia, la Vía mLáctea, y que hay otras muchas galaxias, que vemos a través de grandes extensiones de espacio nebulosas espirales y elípticas. (como eran llamadas en aquel tiempo a las galaxias que, no se podían ver con la nitidez que nos proporcionan nuestras modernos telescopios.)
Einstein entra en escena. Nació en Ulm, donde Kepler antaño había deambulado en busca de un impresor, con el manuscrito de las Tablas Rudolfinas Bajo el brazo. Einstein como sabemos, fue un niño aislado y encerrado en sí mismo. No habló los tres años. Daremos un salto hasta 1905, año en el que comenzaron a cristalizar sus pensamientos pudiendo escribir cuatro artículos memorables que lo situaron en ese lugar de privilegio de los verdaderos maestros.
N0, Einstein no llegó a la Física y la Cosmología en bicicleta, él cogió una autopista mayor, esa que está conformada por los pensamientos y que nos pueden llevar más lejos, de lo que cualquier vehículo nos podrá llevar nunca. El primero de aquellos -ahora famosos- artículos, fue publicado tres días después de cumplir los veintiseis años, contribuiría a poner los fundamentos de la física cuántica. Otro modificó el curso de la teoría atómica y la mecánica estadística. Los otros dos enunciaron lo que se conoció como la teoría de la relatividad especial.
Cuando Planck, por aquel entonces director editorial de la Revista científica Annalen der Physik, levantó la mirada después de leer el artículo sobre la relatividad especial, sabiendo inmediatamente que el mundo había cambiado. La era Newton había terminado y había surgido una nueva ciencia reemplazarla.
La odisea que llevó a Einstein hasta la relatividad especial -y de ella a la relatividad general, que expresaría la cosmología de los espacios curvos- empezó cuando tenía cinco años y su padre le mostró una brujula de bolsillo para que estuviera entretenido pero, aquello, le fascinó y, no podía saber qué magia hacia que la aguja señalara siempre hacisa el mismo lugar sin tener en el movimiento. Al preguntar, le dijeron que la Tierra está envuelta dentro de un campo magnético que era el responsable de tal “milagro” y, aquello, al joven Einstein, le maravilló y despertó su curiosidad que nunca le dejó entonces. Él decía que detrás de las cosas debe haber algo profundamente oculto, que nos podría explicar el por qué se comportan de ciertas maneras.
Como antes decía, en el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, también, que la masa y la energía eran una misma cosa, así como que, ¡el Tiempo!, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.
Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido. Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que se diga, quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.
Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la universal de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.
Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.
Más tarde, Einstein comentaría que la introducción de constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo antes de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión. Sin embargo, estudios posteriores han venido a confirmarla.
Albert Einstein
Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia hasta que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfadado, expresándose en términos sencillos y muy distintos ( estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas pero, que nadie hasta entonces, había sabido contestar.
El astrónomo holandés Willem de Sitter obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.
Lo cierto es que Einstein, ha dado en el “blanco” con muchas de sus Ideas y, si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que – el vaticinó-, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, nuevos mundos y, muy probablemente… nuevas formas de vida.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos.
Arriba Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. Abajo los científicos chinos comandados por Juan Yin crearon fotones entrelazados mediante la estimulación de un cristal con luz ultravioleta, que produjo un par de fotones con la misma longitud de onda, pero opuestos. Por separado, ambas teorías funcionan muy bien y se pueden medir y comprobar límites excepcionales. Sin embargo, si las juntamos…
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas. Y, entonces, en eso estamos pero, el casamiento, no se consuma.
Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad que, inmersa en lo cotidiano de un mundo macroscópico, nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que con su comportamiento, me obligan a pensar y me transportan este mundo material nuestro a ese otro fascinante, donde residen las maravillas del universo, sus cimientos infinitesimales en los que residen las “ladrillos” de las estrellas y galaxias…también de los mundos y de los seres vivos. La materia es tan compleja que aún no hemos podido llegar a comprenderla…del todo.
emilio silvera
Abr
5
¿Teoría de Cuerdas? ¡Qué extraña resulta!
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Todos los que nos asomamos por la ventana de la Física, sabemos, más o menos que, después de más de treinta años de historia con la Teoría de dimensiones extra, no es aún, nada fácil encontrar una respuesta sencilla a una sencilla pregunta: ¿Qué es, la Teoría de Cuerdas? Y, lógicamente, muchos científicos del ámbito de la física, están verdaderamente escandalizados con todo este movimiento del que ellos, hablan como de un montaje circense, una comedia en la que, expertos malabaristas de las matemáticas topológicas, hacen trucos de magia para que parezca lo que no es.
Sin embargo, la cosa no parece que sea tan fácil de despachar, cientos y miles de artículos avalan esa Teoría que, en muchos aspectos, parece ser la esperanza futura de la Física y la única que nos puede abrir caminos ahora cerrados que, nos llevarán más lejos, a lugares que ahora, con la física actual, no podemos visitar.
Claro que no todo son críticas, en un artículo que leí en alguna parte nos dicen: “La teoría ha sido elogiada por algunos físicos debido a su potencial para forjar el largamente buscado vínculo entre la gravedad y las fuerzas que dominan en el núcleo atómico. Pero la teoría –que propone que todas las partículas subatómicas son en realidad diminutas “cuerdas” que vibran de diferentes formas– también ha arrastrado críticas por ser incomprobable en el laboratorio, y tal vez imposible de conectar con los fenómenos del mundo real.
Algunos ven la Teoría de cuerdas como un sueño imposible
Sin embargo, los investigadores de Princeton han descubierto una nueva prueba matemática de que alguna de las predicciones de la Teoría de Cuerdas se entrelazan estrechamente con un cuerpo de la física muy respetable llamado “Teoría Gauge”, el cual se ha demostrado que subyace en las interacciones entre quarks y gluones, los menudos objetos que se combinan para formar protones, neutrones y otras partículas subatómicas más exóticas. El descubrimiento, dicen los físicos, podría dar lugar a una gran cantidad de usos de la Teoría de Cuerdas atacando problemas de la física práctica.”
Es cierto que la Física está dominada por los paradigmas impuestos desde hace cien años por la mecánica cuántica y la relatividad que son dos teorías fundamentales que parten de principios rectores a partir de los cuales las teorías se construyen de una manera casi sistemática. En estos ejemplos es fácil de identificar ese principio rector:
En la Relatividad el principio es la constancia de la velocidad de la luz o, lo que es equivalente, que la velocidad de la luz determina una cota máxima sobre la velocidad de transmisión de información. Una vez aceptado este principio, el resto se da casi por añadidura. La constancia de la velocidad de la luz implica un espacio tiempo con una determinada geometría, la equivalencia entre masa y energía, así como el resto de los resultados de la Dinámica y la Cinemática Relativistas.
Este es el tiempo que tarda la luz en llegar desde la Tierra a la Luna situada a 380.000 Km de nosotros
No podemos perder de vista el hecho cierto de que, la razón por la que la Relatividad se convierte en una auténtica Teoría autónoma es precisamente porque eleva la constancia de la velocidad de la luz a principio rector, a postulado. No se trata de explicar o modelar dinámicamente por qué la velocidad de la luz es la velocidad máxima sino que, muy por el contrario, se trata de derivar toda una cinemática, de hecho la propia naturaleza geométrica del espacio y el tiempo, a partir de dicho postulado.
El Universo de la Mecánica Cuántica nos es fantasmagórico e irreal, es un mundo aparte en el que, podemos ver cosas inusuales y sorprendentes, allí no rigen las mismas leyes que podemos constatar a nuestro alrededor en el mundo macroscópico, o, si están presentes, funcionan de otra manera que, alejada de nuestro propio mundo, no hemos llegado a comprender…del todo.
Nos decía el filósofo Karl Popper:
“La ciencia será siempre una búsqueda, jamás un descubrimiento real. Es un viaje, nunca una llegada.”
El hombre llevaba toda la razón toda vez que, emprendemos la aventura de la Ciencia y tratamos de buscar “cosas” y “comportamientos” que nos digan por qué, la Naturaleza, funciona de esta o de aquella otra manera. Vamos desvelendo escenarios y obteniendo algunas respuestas pero, el viaje no acaba nunca, a cada puerta abierta, nos encontramos con otro nuevo espacio en el que también, existen muchas puertas cerradas cuyas llavez tendremos que encontrar y, siempre será, de esa manera: ¡Un viaje intermivnable! Siempre hay alguna cosa nueva si vamos un poco más allá.
Cada uno de estos cuatro espacios de Hilbert tiene un análisis de Fourier asociado con el.
L2([a,b]) → Series de Fourier
ℓ2([0,n−1]) → Transformada Discreta de Fourier
L2(R) → Transformada de Fourier
ℓ2(Z) → Transformada Discreta de Fourier en Tiempo
Pero los cuatros están basados en el mismo principio (Espacio de Hilbert).
Nota Importante: no todos los espacios normalizados son espacios de Hilbert
Y por tanto el espacio de Hilbert de esos estados puros se asociará con un punto en esa esfera y un sistema multiqubit será algo como lo expresado en la figura.
De forma más formal, el Espacio de Hilbert se define como un espacio de producto interior que es completo con respecto a la norma vectorial definida por el producto interior. Los espacios de Hilbert sirven para clarificar y para generalizar el concepto de series de Fourier, ciertas transformaciones lineales tales como la transformación de Fourie, y son de importancia crucial en la formulación matemática de la mecánica cuántica.
El espacio de Hilbert es una pura construcción matemática pero responde a la perfección a lo que hacía falta para elaborar la teoría cuántica. De no haberse descubierto habría habido que inventarlo para las necesidades de la teoría. El espacio de Hilbert es un espacio vectorial infinitamente grande. En su momento, esto fue una idea revolucionaria, en virtud de que todos los espacios vectoriales, inclusive los espacios matemáticos abstractos, eran finitos. Pero afortunadamente en su trabajo sobre ecuaciones integrales llevado a cabo en 1912 David Hilbert tuvo la visión suficiente para captar la necesidad de tener que postular un espacio vectorial infinitamente grande para poder proyectar todo el aparato matemático de la Mecánica Cuántica sobre una base rigurosamente formal. Y quince años después correspondió a otro matemático igualmente brillante, el matemático húngaro John Neumann, el darle en 1927 una definición axiomática al espacio vectorial de Hilbert en su ya famosa obra Mathematische Grundlagen der Quantenmechanik. Pero Hilbert no solo propuso un espacio vectorial infinitamente grande. Propuso también que los componentes de los “vectores” pudiesen ser números imaginarios o números complejos sin estar limitados a ser números reales, redefiniendo a la vez el concepto del producto interno de dos vectores para que dicho producto pudiese seguir siendo un número real con significado físico.
En el caso de la Mecánica Cuántica el principio rector es el Principio de Incertidumbre de Heisenberg. De nuevo este principio se postula como principio básico y a partir de allí se deduce como tiene que ser el espacio de estados físicos, que se convierte en un espacio de naturaleza completamente nueva como lo es un espacio de Hilbert.
Esto da lugar a fenómenos tan sorprendentes como el entrelazamiento cuántico o la estabilidad atómica.
Sí, el camino ha sido largo. En la serie de artículos Fundamentos de una teoría general de las ecuaciones integrales, Hilbert analizó las técnicas introducidas para estudiar estas ecuaciones por Poincaré y Fredholm a finales del XIX, mejorando sus resultados. En el cuarto artículo de esta serie, publicado en 1906, Hilbert prueba que las ecuaciones integrales pueden resolverse como un sistema de infinitas ecuaciones lineales con infinitas incógnitas.
Todos los objetos situados en el mismo campo gravitatorio caen con la misma aceleración si y sólo si la proporción entre masa gravitacional e inercial es igual a una constante. Por eso precisamente decimos que, en Relatividad General, el principio rector es el principio de equivalencia entre masa inercial y masa gravitatoria.
En la Teoría de Cuerdas la situación es completamente distinta. Se desconoce cual pueda ser el principio rector, si en realidad existe algún principio rector en esta teoría, y es, precisamente este desconocimiento el qure genera en nosotros perplejidad cuando se nos pide una respuesta sencilla a: ¿Qué es la Teoría de Cuerdas?
Recordemos que el nacimiento de la teoría fue, esencialmente modesto. Aquel momento en el que proliferaban los experimentos de resonancias en interacciones fuertes con espines altos resultaba desconcertante, se observó que una manera de hacer consistente la mediación de la interacción con partícuals de espín alto consistía en imponer a las amplitudes de colisión una simetría particular que se denominó dualidad. Desde entonces las cosas han cambiado de manera exponencial y se habla de otra manera y de otras cosas. Veámos que nos dice, por ejemplo, uno de los padres de la teoría de cuerdas:
“Me gusta esta figura porque muestra muy claramente lo que conocemos en física de partículas, lo que esperamos explorar en las próximas décadas, y lo que creemos conocer, aunque nunca llegaremos a explorar de forma directa. La partícula con más masa conocida tiene menos de 200 GeV y todavía se sigue explorando entre 10 a 200 GeV en busca de nuevas partículas. Basta recordar que se acaba de descubrir una partícula con 125 GeV de masa, el bosón de Higgs, y que muchos físicos creen que la partícula responsable de la materia oscura tiene una masa en este rango. El LHC y sus sucesores en las próximas décadas explorarán las energías entre 100 y 5000 GeV (difícilmente podrán llegar más lejos). Sin embargo, hay un desierto hasta energías de 10 000 000 000 GeV (la escala de Planck) que no hemos explorado, que no podremos explorar en el siglo XXI y del que no conocemos absolutamente nada, aunque imaginamos muchas cosas.”
Si sabemos, por ejemplpo que.. la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, …
Como facilmente podemos deducir de lo que arriba se dice, estamos muy lejos aún de llegar a un autoconsistente final en la teoría de cuerdas que, posiblemente necesite disponer de la energía de Planck (1019 GeV), para verificarla de manera que no dejara ningún lugar a dudas. Hemos podido verificar la Teoría Cuántica y tambien, las dos versiones de la Teoría de la Relatividad. Sin embargo… Las cuerdas están lejos de ser una teoría que podamos aceptar y, sólo esperanzas podemos volcar en ella, con la idea de que, en un futuro más o menos lejano, nos pudiera dar aquellas respuestas que, de momento, no encontramos.
No podemos negar que algunos resultados en esta teoría han sido sobresalientes: Las resonancias, que habían actuado como motivación, se acomodaban como modos de vibración de las cuerdas y la democracia nuclear adquiría un status más sólido al reflejar una manera de unificar partículas, con espines arbitrariamente altos, como distintos modos de vibración de un mismo objeto fundamental. Aunque estos avances fueron destacados, la teoría empezó pronto a hacer aguas. En primer lugar, las cuerdas eran tan solo una manera de modelar la física subyacente a las amplitudes duales, pero por otra parte esta estructura de objetos extendidos fundamentales producía una serie de consecuencia que no iban a encajar con los futuros resultados experimentales en interacciones fuertes.
Las amplitudes duales, aunque implementaban la idea de democracia nuclear, daban ineludiblemente lugar a un comportamiento de las amplitudes a altas energías mucho más suave del que se observaba en la realidad. Por otro lado los avances formales habían mostrado que la consistencia de la teoría exigía un espacio tiempo de dimensión 26 y que el espectro contenía al menos un taquión (una partícula con masa imaginaria). Estos defectos fueron pronto, parcialmente subsanados, dando lugar a conceptos que han ocupado un papel crucial en la Física de los últimos lustros; estoy hablando de la supersimetría y al renacimiento de las ideas de Kaluza y Klein sobre espacio-tiempo con más de cuatro dimensiones.
Seguiremos hablando de la Teoría de Cuerdas y llegaremos hasta la actual posición que ocupa ésta compleja idea que algunos físicos han venido desarrollando en los últimos cuarenta años y que, nadie sabe en qué pueda desembocar. Muchas han sido las teorías que han sido desarrolladas y, siempre, nos dieron respuestas a cuestiones que, en un principio, ni podíamos imaginar.
¿Os acordáis de la Teoría del Caos?
El efecto mariposa, un atractor extraño
El orden lleva asociado un grado importante de predicción, al caos le sucede lo contrario. Los sistemas lineales, representan el orden, son predecibles y cómodos de manejar, de ahí nuestra tendencia a generalizarlos. Ante un sinfín de situaciones generalizamos, proyectamos los datos del presente para tratar de averiguar un comportamiento futuro y casi siempre nos va bien. Pero existen sistemas que se resisten: pequeñas variaciones, incertidumbres, en los datos iniciales desembocan en situaciones finales totalmente descontroladas e impredecibles. Son los llamados sistemas caóticos.
Pues, de la misma manera, estamos tratando de desarrollar una teoría que, de alguna manera, nos pueda responder a cuestiones que son presentidas e intuidas pero que, hasta el momento, nadie ha podido explicar y, es precisamente con la Teoría de Cuerdas con lo que se quiere buscar esas respuestas profundamente escondidas en las entrañas de la naturaleza: ¡La Teoría de Cuerdas! Que podría ser una quimera o una gran solución.
emilio silvera
Abr
5
¿Nuestras vidas? La podemos llevar… ¡De tántas maneras!
por Emilio Silvera ~
Clasificado en Divagando ~
Comments (0)
“La paradoja de nuestro tiempo en la historia es que tenemos edificios más altos pero temperamentos más cortos, autopistas más anchas, pero puntos de vista más estrechos. Gastamos más pero tenemos menos, compramos más, pero gozamos menos. Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo. Tenemos más grados y títulos pero menos sentido, más conocimiento, pero menos juicio, más expertos, sin embargo más problemas, más medicina, pero menos . “
Quizá el problema esté en que no sabemos donde reside lo que realmente tiene valor, tendemos a querer tener la casa más grande, el coche que más corra, la pantalla de plasma o el celular de la última generación, siempre vamos corriendo a todas partes y, salimos de noche de casa y regresamos cuando el día ha terminado pero, cuando nos acostamos sin haber visto a los niños dormidos, nos cueta coger el sueño… La hipoteca, aquel préstamo, el negocio que no marcha, la inestabilidad de la empresa…
Los Tiempos cambian, las ciudades también
Dedicar algún tiempo a la familia, sacrificando los beneficios puede compensarnos a la larga, ya que, no siempre es el dinero el que nos proporciona los mejores momentos, los más auténticos. Estos momentos felices, residen siempre en lo más sencillo, lo más cercano, nuestro entorno y nuestra familia que, al fin y al cabo… ¿Qué tenemos mejor que eso?
No puedo ni recordar la cantidad de veces que me perdí, ayudar a mis hijos pequeños en la tarea del colegio. Estaba de viaje, la Oficina me ocupaba demasiado tiempo, el trabajo no me dejaba mucho tiempo libre y, sin embargo, ahora miro hacia atrás, y, nada de aquello podía compensar, de hecho no compensó nunca aquellos momentos perdidos. Que no se trata de que los perdieras tú, si no que, además, se los hicistes perder a tus hijos que, lo echaron de menos y, seguramente, así lo recordaran.
El Tiempo sólo marcha en una dirección: La flecja del Tiempo que sigue siempre adelante y, el momento que pasó, nunca podrá volver atrás, si en cada m omento no hacemos aquello que procede hacer… ¡Lo perderemos para siempre!
Así, contemplaremos el paisaje y disfrutaremos de la Naturaleza
Dar un sencillo paseo por el campo aspirando los aromas de las plantes y las flores, oyendo el canto de algún pajarillo y dejar que nuestros oidos sean acariciados por el rumor de un regajo cercano por el que, el agua transparente corre camino de un cauce mayor. ¿Cuánto vale eso?
Este viaje, aunque no se le niegue emoción… es diferente, otra cosa
No, esto no es calidad de vida. Pasarse años en esta ciudad, seguramente, acortará el tiempo que podamos estar aquí. El estrés y la agobieante forma de vida en una de estas ciudadades… ¡acabaría conmigo. La escena que arriba contemplamos es desquiciante y sin duda alguna hará mella en los seres que ahí tengan que estar cada día, en esa vorágine de actividad inusitada entre ruidosruidos insoportables.
Mejor poder dejar pasar tu tiempo en una casa tranquila con un poco de jardín, en la que los fines de semana se escuche el bullicioso ruído de los más pequeños con sus juegos que te traen recuerdos de otros tiempos pasados que, de esta manera, puedes volver a revivir en tu memoria.
Y, mientras eso ocurre, tienes la oportunidad de mirar por la cristalera mientras tecleas tus ideas en ese espacio en blanco que te deja el ordenador para que, juntando las palabras, puedas expresar las cosas que por tu imaginación van pasando.
Claro que, no siempre podemos hacer realidad nuestros deseos y, todos, sin excepción, estamos supeditados a lo que la vida nos tiene deparado que, no pocas veces, es un destino que nos forjamos nosotros mismos.
emilio silvera
Abr
4
Nebulosas Planetarias y estrellas enanas blancas
por Emilio Silvera ~
Clasificado en ese misterio ~
Comments (0)

NGC 2392 es una nebulosa planetaria en la constelación de Gérminis
En la imagen de arriba contemplamos la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o/ 5000 años-luz de la Tierra.
La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.
Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.
La Nebulosa del Esquimal fue descubierta por William Herschel el 17 de enero de 1787.
La Nebulosa Reloj de Arena
Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado, expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas en los últimos momentos de sus vidas.
Las nebulosas planetarias son objetos de gran importancia en astronpmía, debido a que desempeñan un papel crucial en la evolución química de las Galaxias, devolviendo al medio interestelar metales pesados y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, xígeno, Calcio… y otros). En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.
La Nebulosa Ojo de Gato. Imagen en falso color (visible y rayos X) tomada por el tomada por el Hubble.
La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nubulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda denudo un puntito blanco que es, la estrella enana blanca.
El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la preseión de degeneración de los electrones ( saben los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, , incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).
Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.
Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.
Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.
El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.
Procyon B, una débil enana blanca.
Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.
Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posiblidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrela compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.
La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.
Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.
A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.
Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.
Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.
De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.

Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.
Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.
Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.
Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.
La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.
emilio silvera