viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo de Ayer y el Universo de Hoy

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para los babilonios,  incluso la existencia del universo era un hecho contingente, algo que podía suceder. Estamos aquí porque Marduk ganó su batalla contra el monstruo. Si no hubiera sido así, todavía prevalecería el caos primordial. No hubiera habido ni tierra ni cielos y, por supuesto, seres humanos que se maravillasen ante la creación. Así, los aspectos más importantes del mundo dependen de suscesos a los que no se aplica ninguna ley inmutable.

 

Impresión de un Cilindro-sello babilónico en la que se aprecia la lucha de Marduk contra el monstruo serpentiforme Tiamat. Ya en aquella lejana época los miembros de nuestra especie dejaron muestras de su inmensa imaginación para describir las cosas que ellos “creían” que eran el significado de los fenómenos de la Naturaleza que traducían en dioses. Ahora nosotros, lo hacemos con “la materia oscura” y cosas similares.

El universo sólo podía ser controlado por los dioses, y los dioses sólo podían ser inducidos a atender a las necesidades humanas mediante el uso de rituales. Sospecho que los “universos de espíritus y dioses” proporcionaban mucha más gratificación emocional a los que creían en ellos de la que nuestro universo nos proporciona a nosotros que, habiendo llegado a comprender, más que gratificarnos lo que hace es asombrarnos y sólo nos gratifican los descubrimientos que de la Naturaleza vamos conquistando. Después de todo, el universo de los babilonios era un lugar en el que las cosas que sucedían eran muy humanas.

El atractivo de todas estas viejas creencias (de alguna manera) no ha desaparecido ni suqiera ahora, en nuestro tiempo actual. Una gran parte del movimiento contracultural de los sesenta implicaba un rechazo de la cultura racional y científica de la Norteamérica moderna que comenzaba a florecer con fuerza y una vuelta a una visión más mítica del universo.

No obstante, por muy satisfactorios emocionalmente que fueran los viejos sistemas, dejaba mucho que desear en el terreno intelectual. Batalla o no batalla en el mundo inferior, el Sol sale cada mañana. Los movimientos de las estrellas y de los planetas pueden depender del humor de los dioses, pero son regulares y predecibles. De algún modo, la yuxtaposición de las verdades muy personales y contingentes de los antiguos universos con el comportamiento regular de los cielos parece difícil de explicar, al menos para las mentes del siglo XXI.

                   Tales de Mileto dejó a un lado la Mitología y aplicó la Lógica

Fueron los griegos los primeros que concibieron un universo algo parecido al que concebimos hoy. Sus ideas se caracterizaban por un vivo escepticismo. Por ejemplo,  en una generación anterior a Arquitas, el historiador Herodoto hizo un viaje por Egipto. Le mostraron un templo en el que los sacerdotes ponían comida para el dios todas las noches. La comida había desaparecido siempre por la mañana, hecho que presentaban a Herodoto como demostración de la existencia del dios.

“Yo no ví ningún dios -comentó-, pero ví muchas ratas junto a la base de la estatua.”

¡Es difícil no encontrar simpático a alguien que piensa de ese modo!

Este tipo de mente inquisitiva condujo a los griegos a un universo que era notablemente diferente de los que hemos podido conocer que representaban civilizaciones más antiguas. Y su trabajo era tan impresionante que siguió siendo la versión aceptada de los cielos hasta después del Renacimiento, casi mil quinientos años y, ante eso, me tengo que preguntar: ¿Durará tánto tiempo nuestra actual visión del Universo?

Y llegó Ptolomeo

ptolomeo Hiparco Claudio PtolomeoNació en Tolemaida Hermía, en el Alto Egipto. Fallece en Alejandría, ciudad en donde desarrolló toda su actividad. Está considerado como uno de los personajes más relevante e importante de la historia. Astrónomo, matemático y geógrafo. Ptolomeo propuso el sistema geocéntrico como la base de la mecánica celeste que persistió durante más de 1400 años. Sus teorías, investigaciónes y explicaciones astronómicas prevalecieron en el pensamiento científico hasta el siglo XVI. Esta considerado como el último científico más importante de la antigüedad y su fama se debe a su exposición del sistema ptolomaico. Recopiló los conocimientos científicos de su época, añadiendo sus observaciones y las de Hiparco de Nicea. Escribo una obra conocida con el nombre de “Almagesto” (Ptolomeo la había denominado Sintaxis Matemática) realizada en 13 volúmenes, llegando a Europa en una versión traducida al árabe.

 

 

 

escuela ateniense copiar Hiparco Claudio Ptolomeo

 

 

En la explicaciones del Almagesto del sistema ptolomaico,  la Tierra se encuentra situada en el centro del Universo y el Sol, la Luna y los planetas giran en torno a ella arrastrados por una gran esfera llamada “Primum Movile”, mientras que la Tierra es esférica y estacionaria. Las estrellas están situadas en posiciones fijas sobre la superficie de dicha esfera.

Claudio Tolomeo, es el hombre en el que se piensa siempre como expositor de la astronomía griega, vivió en Alejandría en el siglo II d. C., y trabajaba en el Museo de Alejandría que funcionaba en cierto modo como un moderno centro de investigación y laboratorio gubernamental.

Tolomeo recopiló las mediciones de sus antecesores griegos y babilonios, hizo algunas por sí mismo y utilizó el trabajo previo para producir un modelo de universo que explicara todo lo que había sido observado y, como es natural, si pensamos en los medios que tenía, puso a la Tierra en el centro, mientras que esferas de cristal giraban siendo portadoras del Sol, de la Luna, de los planetas y de las estrellas.

Explicar aquí ahora lo que era el universo telemaico no parece lo más adecuado por lo sabido del tema. Sin embargo, sí es preciso decir que, estaba basado en el supuesto tácito del  geocentrismo, y, aunque algunos científicos griegos, como Pitágoras e Hiparco, sugirieron que el Sol no debería ocupar un lugar central en el cosmos, pocos hicieron caso a sus argumentos.

Galileo Galilei (1564 - 1642) y Johannes Kepler (1571 - 1630)

 Galileo Galilei (1564 – 1642) y Johannes Kepler (1571 – 1630)

Después de quello, como todos con0cemos, llegaron Galileo, Tycho Brahe y Kepler…Newton y Einstein que nos trajeron un Universo muy diferente. Se explicaba las órbitas de los planetas, se descubrió la Gravedad causada por las grandes masas como las galaxias, estrellas y planetas, se habló de cómo se curvaba el espaciotiempo, se conocieron los cuásars, las estrellas de neutrones y los agujeros negros y, en definitiva, supimos que estamos en un universo en expansión donde la materia y la energía está representada por la materia y las interacciones de fuerzas que interactúan entre sí.

Es cierto, el acto de explorar modifica la perspectiva del explorador. Así ha sucedido con la investigación científica de los extremos de las escalas, desde la grandiosa extensión del espacio cosmológico hasta el “mundo” infinitesimal y vertiginosamente enloquecido de las partículas subatómicas y del átomo.

La exploración del ámbito de las galaxias extensió nuestro alcance de visión en un factor de 1026 veces mayor que nuestra propia escala humana, y produjo la revolución que llamamos relatividad, la cual reveló que la visión newtoniana del mundo sólo era una imagen local y pequeña en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible. La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución, la de la física cuántica que vino a cambiarlo todo en ese dominio infinitesimal.

electricidad

Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de ésto último es la increíble precisión de diesciciete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.

dibujo26ene2008a.jpg

Imagen ilustrativa de la dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos. La mecánica cuántica describe, en su visión más ortodoxa, cómo en cualquier sistema físico –y por tanto, en todo el universo- existe una diversa multiplicidad de estados, los cuales habiendo sido descritos mediante ecuaciones matemáticas por los físicos, son denominadoss estados cuánticos. De esta forma la mecánica cuántica puede explicar la existencia del átomo y desvelar los misterios de la estructura atómica, tal como hoy son entendidos; fenómenos que no puede explicar debidamente la física o más propiamente la mecánica clásica.

Este es el Universo que hoy podemos ver gracias a los avances de la tecnología y los nuevos conocimientos

¡Qué lejos quedan los babilonios y el universo de Marduk!

¡Qué simple se ve ahora el universo de Tolomeo!

El desarrollo de la relatividad especial creó un escenario nuevo. Una de las conclusiones del trabajo de Eisntein es que ningún objeto -de hecho, ninguna influencia o perturbación de ninguna clase- puede viajar a una velocidad mayor que la de la luz. Sin embargo, como hemos podido leer muchas veces, la teoría universal de la gravedad de Newton, que experimentalmente funciona tan bien y es tan grata para la intuición, habla de influencias que se transmiten en el espacio a grandes distancias instantáneamente. De nuevo fue Eisntein el que intervino en el conflicto y lo resolvió ofreciendo un nuevo concepto de la Gravedad en su teoría general de la relatividad.

Así, nuestro mundo cambió de nuevo y ahora, se rige por estas dos leyes: Cuántica y Relativista que son las que marcan las pautas de la Ciencias físicas y Cosmológicas. ¿Cómo veremos el Universo dentro de un milenio? Seguramente nos parecerá el universo de hoy, tan atrasado como nos parece hoy el de Tolomeo.

No es sólo que el Espacio y el Tiempo estén influidos por el estado del movimiento del observador, sino que, además, pueden alabearse y curvarse como respuesta a la presencia de materia o energía. Tales distorsiones en la estructura del Espacio y el Tiempo, transmiten la fuerza de Gravedad de un lugar a otro que, más cercano o más lejano, recibe la influencia de esta fuerza fundamental. Así que, desde entonces no se puede ya pensar que el Espacio y el Tiempo sean un telón de fondo inamovible e inerte en el que se desarrollan los sucesos del universo; al contrario, según la relatividad especial y la relatividad general, son actores de primera fila que desempeñan un papel íntimamente ligado al desarrollo de todos los hechos que en el universo ocurren.

Una vez más  el modelo se repite: el descubrimiento de la relatividad general, aunque resuelve un cnflicto, nos lleva a otro. A lo largo de tres décadas a partir de 1900, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas  evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Como he mencionado anteriormente, el tercer conflicto, el más trascendental, surge de la incompatibilidad entrem la mecánica cuántica y la relatividad general. La forma geométrica ligeramente curvada del esapcio, que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica.

                                 Un amigo tiene en sus manos la teoría luz-luz… ¿será el futuro?

Y, volvemos otra vez al principio: Tenemos que persistir en aquellos trabajos de los años ochenta, cuando se presentó la solución que ofrecía la teoría de cuerdas para este tercer conflicto o problema. En realidad, es el mayor conflicto que se nos presenta en la física moderna. Necesitamos ya, para poder explicar muchas cosas y seguir avanzando, una teoría cuántica de la gravedad. Estamos parados, no podemos avanzar como sería deseable y, desde luego muchas son las iniciativas que se intentan: Teoría de Cuerdas, Teoría Luz-luz (energía-masa) y otras muchas que están, en la mente de los mejores físicos del mundo pero que no acaban de germinar.

Esperémos que pronto salgan a la luz esas ideas y pensamientos que nos lleven hacia una ciencia física del futuro en la que, nuevos paradigmas vengan a jubilar (cariñosamente lo digo) a estas dos que ahora son el soporte de todo: ¡Cuántica y Relatividad! y, me pregunto yo: ¿Habrá algo más después de esas dos teorías que, llevando un siglo en el candelero, piden a gritos que las jubilémos?

emilio silvera

¿Qué habrá más alládel Modelo Estándar?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Modelo Estánfar    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algún maestro decía: “Inicialmente, se presenta, de modo simplificado, el Modelo Estándar como una teoría sofisticada que identifica las partículas elementales y sus interacciones. Después, en el ámbito de esa teoría, se enfocan aspectos – el vacuo no es vacío; partículas desnudas y vestidas; materia oscura y viento oscuro; materia y antimateria; el campo y el bosón de Higgs; neutrinos oscilantes – que pueden ser motivadores desde el punto de vista de la enseñanza y del aprendizaje de la Física. Finalmente, se discute la probable superación de esa teoría por otra más completa.”
Los leptones sólo interaccionan entre sí mediante fuerzas débiles y/o electromagnéticas. Los quarks, sin embargo, interaccionan por cualquiera de las tres fuerzas indicadas. Y, en todo ésto, la gravedad está ausente y hace que la teoría esté incompleta. De todas las maneras, no debemos quitar mérito a tan compleja construcción de la mente humana que tan buenos resultados nos ha dado.
Gordon Kane, un físico teórico de la Universidad de Michigan nos dice:
“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones.”
De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.
Pero ¿cómo se da la interacción? ¿Quién “transmite el mensaje” de la fuerza entre las partículas que interactúan? Eso nos lleva a las partículas mediadoras o partículas de fuerza o, también, partículas virtuales.
Las interacciones fundamentales tienen lugar como si las partículas que interactúan “intercambiasen” otras partículas entre sí. Esas partículas mediadoras serían los fotones en la interacción electromagnética, los gluones en la interacción fuerte, las partículas W y Z en la interacción débil y los gravitones (aún no detectados) en la interacción gravitacional. Es decir, partículas eléctricamente cargadas interactuarían intercambiando fotones, partículas con carga color interactuarían intercambiando gluones, partículas con carga débil intercambiarían partículas W y Z, mientras que partículas con masa intercambiarían gravitones.
Las partículas mediadoras pueden no tener masa, pero tienen energía, o sea, son pulsos de energía. Por eso, se llaman virtuales. De los cuatro tipos de partículas mediadoras8, las del tipo W y Z tienen masa, pero es común que todas sean llamadas partículas virtuales.
¡Pero faltan los campos! Los cuatro campos. Sabemos que un cuerpo con masa crea alrededor de sí un campo gravitacional, un campo de fuerza que ejerce una fuerza sobre otro cuerpo masivo y viceversa. Análogamente, un cuerpo cargado eléctricamente, crea un campo electromagnético (si está en reposo, se percibe sólo su componente eléctrico, si está en movimiento se manifiesta también el componente magnético) y ejerce una fuerza electromagnética sobre otro cuerpo electrizado y viceversa.
El problema en esa bella simetría de cuatro cargas, cuatro interacciones, cuatro fuerzas, cuatro tipos de partículas mediadoras y cuatro campos es que aún no hemos podido detectar ningún gravitón y la gravedad, en sí, no encaja bien en esa teoría llamada Modelo Estándar.
La Física actual busca una teoría más amplia que el modelo estándar . Una teoría que dé una descripción completa, unificada y consistente de la estructura fundamental del universo. ¿Será la compleja Teoría de cuerdas,que integra también la interacción gravitaroria?

El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, construímos máquinas como el LHC para que nos diga lo que no sabemos.

Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.

Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?

Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.

Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos.  Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?

El gobierno de Estados Unidos, después de llevar gastados miles de millones de dólares, suspendió la construcción del supercolisionador superconductor de partículas asestando un duro golpe a la física de altas energías, y se esfumó la oportunidad para obtener nuevos datos de vital importancia para el avance de este modelo, que de momento es lo mejor que tenemos.

Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman materia oscura”.

Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta. Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la relatividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.

File:Evolución Universo WMAP.jpg

Se piensa que al principio del comienzo del tiempo, cuando surgió el Big Bang, las energías eran tan altas que allí reinaba la simetría total; sólo había una sola fuerza que todo lo englobaba. Más tarde, a medida que el universo se fue expandiendo y enfriando, surgieron las cuatro fuerzas que ahora conocemos y que todo lo rigen. Tenemos los medios, en los supercolisionadores de partículas, para viajar comenzando por 1.000 MeV, hasta finalizar en cerca de 1019 MeV, que corresponde a una escala de longitudes de aproximadamente 1030 cm. Howard Georgi, Helen Quinn y Steven Weinberg descubrieron que ésta es la región donde las tres constantes de acoplamiento gauge se hacen iguales (U(1), SU(2) y SU(3)); resultan ser lo mismo. ¿Es una coincidencia que las tres se hagan iguales simultáneamente? ¿Es también una coincidencia que esto suceda precisamente en esa escala de longitud? Faltan sólo tres ceros más para alcanzar un punto de retorno. Howard Georgi y Sheldon Glashow descubrieron un modelo genuinamente unificado en el dominio de energías de 1019 MeV tal que, cuando se regresa de allí, espontáneamente surgen las tres fuerzas gauge tal como las conocemos. De hecho, ellos encontraron el modelo; la fórmula sería SU(5), que significa que el multiplote más pequeño debe tener cinco miembros.

http://cmcagustinos.files.wordpress.com/2010/10/circulo.jpg

Materia y Energía Oscura… Un Misterio…Sin resolver.

 

Y, a todo esto, ¿dónde está esa energía oculta? ¿Y donde la materia? Podemos suponer que la primera materia que se creo en el Universo fue la que llamamos (algún nom,bre había que ponerle) “Materia Oscura”, esa clase de Ilem o sustancia primera del Universo que mejor sería llamarla invisible, ya que, de no ser así, difícil sería explicar cómo se pudieron formar las primeras estrellas y galaxias de nuestro Universo, ¿dónde está el origen de la fuerza de Gravedad que lo hizo posible, sino en esa materia escondida?

¡Lo dicho! Necesitamos saber, y, deseo que de una vez por todas, se cumpla lo que dejó dicho Hilbert en su tumba de Gotinga (Alemania): “Tenemos que saber, ¡sabremos!. Pero…

¡Que sea pronto!

emilio silvera

El trabajo está conformado por muchas fuentes.