viernes, 03 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Hola!, DA14… ¡Uy! ¡Qué poco faltó!

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Recreación del paso del asteroide facilitada por el Observatorio Astronómico de Mallorca Efe

Bueno, pese a su trayectoria cercana, nada parece que deba inquietarnos pero… ¿Será éste el último que nos quiera visitar? Y, si algún otro viene de camino, pasará de largo. Fijáos en la caída de un meteorito en la región rusa de Cheliábinsk, en los montes Urales, que ha causado más de 1000 heridos, es el accidente de mayores consecuencias originado por un cuerpo celeste en la tierra en los últimos años.

Impactante video de meteorito caído en Rusia

                                                    Fuente: Privada | Créditos: YouTube

Impactantes imágenes y videos de caída del ´Bólido de Cheliábinsk´ se pueden ver en internet

 

Mientras todo el mundo estaba este viernes pendiente del asteoride 2012 DA14, que está pasando cerca de la Tierra esta noche, otra roca celeste entraba en la atmósfera unas horas antes, de modo completamente imprevisto y provocando más de 500 heridos en la provincia de Cheliábinsk en los Urales, y alrededores. En la zona hay una central nuclear y un centro de tratamiento y almacenamiento de residuos atómicos. Si fue una casualidad, como se inclinaban los expertos, ha sido una tremenda casualidad. También se se ha barajado la posibilidad de que ambos objetos celestes (el asteroide de unos 50 metros de diámetro y el meteorito de 15) estuvieran relacionados y que el meteorito fuera una pequeña roca desprendida del asteroide. Pero en tal caso habrían llevado el mismo rumbo en el cielo y no parece que fuera así. La NASA lo ha descartado hoy, aún con datos preliminares: “La trayectoria del meteorito que ha caído en Rusia es significativamente diferente de la trayectoria del asteroide 2012 DA14, lo que significa que se trata de objetos que no tienen ninguna relación”.

 

Los fragmentos del meteorito han causado daños en al menos seis ciudades de los alrededores del punto donde cayó el cuerpo astral sobre las 09.20 hora local (03.20 GMT), a unos 80 kilómetros de la ciudad de Satka, cabecera del distrito del mismo nombre. El suceso de los Urales se produce el mismo día en el que está previsto que el asteroide 2012 DA14, de entre 45 y 95 metros de diámetro, pase a unos 27.860 kilómetros de la Tierra, la mayor aproximación registrada de un objeto cósmico a nuestro planeta.

El Asteroide 2012 DA14 fue descubierto el pasado 22 de diciembre por un grupo de científicos del observatorio de La Sagra (Granada). Los expertos han pronosticado que el cuerpo rocoso previsto alcanzar la menor distancia a la Tierra sobre las 20.24 horas, cuando pase sobre la isla de Sumatra, en el Océano Índico. No habrá peligro de que la piedra quede atrapada por la gravedad terrestre, que es la fuerza con la que los satélites que rotan en torno al globo quedan fijados. El meteorito hará una pasada a nada menos que 7,8 kilómetros por segundo. Cruzará el llamado cinturón geoestacionario, donde los ingenios espaciales quedan atrapados girando, sin poder irse más lejos ni volver a caer a tierra.
la NASA ya se ha encargado de calmar los ánimos, asegurando que no existe ninguna posibilidad de que el asteroide colisione hoy con la Tierra. «Este tipo de asteroides pequeños no provocarían una catástrofe, pero sí daños regionales», explicó hace unos días a través de una teleconferencia Lindley Johnson, director de la Oficina del Programa de Objetos Próximos a la Tierra (NEO, en inglés) de la NASA. Arrojando más luz sobre este extraordinario episodio espacial, la Nasa ya ha colgado en su web una secuencia de las tres primeras imágenes del asteroide.

                         Vídeo: Chris Laurel / Cosmographia. Locución: M. Viciosa

La roca, de unos 45 metros y unas 130.000 toneladas, es el objeto espacial de mayor tamaño que se haya acercado tanto a la Tierra desde que la NASA ha seguido el rastro de los asteroides durante más de medio siglo. De haber caído en nuestro planeta, aunque no hubiese sido una catástrofe planetaria, si que habría causado daños locales considerables y, el cráter también hubiese sido considerable.

“Supimos que se acercaría mucho a la Tierra dos días después de descubrirlo. El cálculo sobre la distancia a la que situaría lo realizaron en el laboratorio JPL de Pasadena de la NASA”, explica su descubridor. El 2012 DA14 es extremadamente opaco y, desde su detección, la vigilancia de su trayectoria se ha hecho principalmente con observaciones en la gama infrarroja donde se detecta el reflejo de la luz del Sol sobre la superficie del asteroide.

La visita del cuerpo celeste más mediático de los últimos años ha quedado eclipsada por la caída inesperada de un meteorito en Rusia que ha causado más de 1000 heridos. En principio, los astrónomos descartan que este suceso tenga relación alguna con el asteroide 2012 DA14.

Reconstrucción del meteorito que arrasó la Tierra. | Nature

          La caída sobre la Tierra de un Gran asteroide sí que es temible

La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas.

Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.

¡Que la suerte nos acompañe!

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestra realidad es que cada uno de nosotros percibimos, entendemos y actuamos de manera diferente en la vida. Cada uno poseemos nuestra propia realidad del mundo y de nosotros mismos. Estamos construidos a base de creencias, y esas creencias son las que influyen de manera decisiva en nuestra realidad y en nuestra conducta, por lo tanto, son las culpables de que consigamos o no nuestros objetivos. Básicamente nuestra realidad está formada por nuestras creencias.

“Nuestra tarea más urgente es dejar de identificarnos con el pensamiento, dejar de estar poseídos por él”     Eso nos aconseja Eckhart Tolle, y, no siempre resulta ser de esa manera, Hay ocasiones en la que, nuestros pensamientos son la guía que nos pueden llevar al buen destino, y, si lo que dice (que no lo aclara) está referido a los pensamientos de los otros, simplemente se trata de discernir dónde radica la verdad, en lo que nos dicen o en lo que nosotros creemos. Claro que, no todos creen siempre en lo correcto.

Nosotros los humanos, nunca estamos seguros de nada y, buscando esa seguridad, creamos modelos con los que tratamos de acercarmos más y más a esa realidad que presentimos, y, para ello, encontramos las maneras de aproximarnos a esa realidad “presentida”.

Pero vayamos a algo concreto y pensemos, por ejemplo, en la técnica reiterativa que se utiliza para obtener “soluciones” en casos como el problema de los tres cuerpos (por ejemplo) tiene un inconveniente. A veces no funciona, no siempre podemos decir a priori si va a funcionar o no. La técnica que se aplica para “resolver” las ecuaciones diferenciales pertinentes (recordemos que no se pueden resolver analíticamente) implica realizar aproximaciones sucesivas, en las cuales, como es sabido, el primer paso del proceso de cálculo sólo da una solución aproximada; el segundo paso añade (con un poco de suerte) una correccción para obtener una aproximación más precisa de la realidad; el tercer paso nos da una aproximación aún mejor, y así sucesivamente hasta que nos parezca que la aproximación es lo suficientemente buena para el objetivo que nos hayamos propuesto. Pero nunca podremos conseguir con exactitud la “respuesta” que encaja a la perfección con el comportamiento de los objetos del mundo real en lo que se centra nuestro interés en ese determinado momento y sobre ese objetivo en particular.



Ninguna idea nos ha llegado de manera instantánea y depurada en todos sus conceptos, sino que, han sido ideas que han tenido que ir siendo depuradas más y más a conseguir esa realidad que buscábamos haciendo que, el esquema encontrado, se parezca lo más posible al mundo que nos rodea y que podemos observar. Esa es, en pocas palabras la historia de la Relatividad de Einstein que ajunto muchas ideas  y conceptos para conseguir sus teorías que están muy cercas de lo que el mundo es.

Lo que hacemos es sumar una serie de números -en principio, una serie de números infinitamente larga- A los matemáticos les interesa estas series infinitas para sus propios objetivos, independientemente de la importancia quer puedan tener para los estudios del comportamiento de las cosas tales como los planetas que orbitan alrededor del Sol, y conocen una gran cantidad de series infinitas cuyas sumas se comportan lo suficientemente bien como para ofrecer una aproximación cada vez mejor de un número concreto.

                                   En esta aproximación muestra la prueba de texturizado del modelo 3D finalmente seleccionado.

Un buen ejemplo lo constituye uno de los procedimientos que se utilizan habitualmente para calcular el valor aproximado de π, el cociente entre la circunferencia de un círculo y su diámetro. Se puede calcular realmente el valor de π/4, con tanta precisión como se desee, sumando la serie numérica:

1 – 1/3 + 1/5 – 1/7 ….

Esto nos da una primera aproximación del valor de π que sería (4 x 1), que no es muy brillante; una segunda aproximación cuyo valor sería 2,6666… (4 x 2/3), que es algo mejor, y que, curiosamente,  se encuentra al otro lado de la respuesta «correcta»; una tercera aproximación que sería 3,46666…, y así sucesivamente. Estas aproximaciones van siendo cada vez mejores y convergen en el verdadero valor de π, en este caso concreto desde ambos lados. Pero el proceso es tedioso -la suma del primer millón de términos de la serie nos da para pi (π) un valor de 3,1415937, que sólo es correcto en sus cinco primeras cinco cifras decimales, Ni obstante, se puede calcular π de este modo hasta el grado de precisión que se desee (hasta alguna cifra de los decimales), si tienes la paciencia necesaria.

 

Hacemos una parada aquí para dejar una nota que nos dice que  independiente de cualquier otra consdideración, lo cierto es que, en matemáticas y la teoría del caos y  entre otros temas. Si hablamos de  “Pi” mos topamos con múltiples sorpresas y él está representado en el diseño de la doble espiral de ADN, el efecto mariposa y la Torah, entre otras muchísimas cosas que  se escriben con Pi. Es un número misterioso que lo podemos ver por todas partes reopresentado de una u otra manera. Desde la más remota antigüedad, fascinó a los más grandes pensadores.

No pocos están convencisos de la existencia de patrones que se repiten en los distintos órdenes de la vida. Descubrirlos implicaría, nada más y nada menos, que deducir el mundo. Yo no dejaría de lado, en todo esto la teoría del Caos  que podría definirse (¡en forma muy simplona!) como el estudio de sistemas complejos siempre cambiantes. Los resultados que consideramos ´impredecibles´ ocurrirán en sistemas que son sensibles a los cambios pequeños en sus condiciones iniciales. El ejemplo más común es conocido como “el efecto mariposa “. La teoría supone que el batir de alas de una mariposa en la China durante un determinado período de tiempo podría causar cambios atmosféricos imperceptibles en el clima de New York.

Pi es la decimosexta letra del alfabeto griego y el símbolo que representa el misterio matemático más viejo del mundo: la proporción de la circunferencia de un círculo a su diámetro.

El registro escrito conocido más temprano de la proporción viene del año 1650 antes de Cristo en Egipto, donde un escriba calculó el valor como 3.16 (con un pequeñísimo error). Aunque ahora, nosotros tenemos métodos para calcular los dígitos de pi (3.1415…) sus restos de valor exacto todavía son un misterio.

Desde 1794, cuando se estableció que Pi era irracional e infinita, las personas han estado buscando un patrón en el cordón interminable de números.

Cosa curiosa, Pi puede encontrarse por todas partes, en la astronomía, en la física, en la luz, en el sonido, en el suelo, etc. Algunos cálculos advierten que tendría más de 51 mil millones de dígitos, pero hasta el momento no se ha detectado un patrón discernible que surja de sus números. De hecho, la primera sucesión 123456789 aparece recién cerca de los 500 millones de dígitos en la proporción.

 

 

 

En la actualidad hay algunas computadoras superpoderosas tratando de resolver la cuestión. En el film, la computadora bautizada por Max como Euclid literalmente “estalla” al acercarse a la verdad del cálculo. ¿Y entonces?… Azar, fe, creencias, ciencia, métodos…y siempre un misterio último sin resolver.

¿El hallazgo de patrones será la respuesta? Tal vez por eso los pitagóricos amaban la forma/patrón espiral… porque ella está por todas partes en la naturaleza: en los caracoles, en los cuernos del carnero, en las volutas de humo, en la leche sobre el café, en la cara de un girasol, en las huellas digitales, en el ADN y en la Vía Láctea.

3.1415926535897932384626433832795028841971693993…

 

Sí, son muchas las mentes más claras que se han interesado por este fascinante número π. En su libro de 1989 “La nueva mente del emperador”, Roger Penrose comentó sobre las limitaciones en el conocimiento humano con un sorprendente ejemplo: Él conjeturó que nunca más probable es saber si una cadena de 10 7s consecutivo aparece en la expansión digital del número pi . A tan sólo 8 años más tarde, Yasumasa Kanada utiliza una computadora para encontrar exactamente esa cadena, empezando por el dígito de pi …. 17387594880th

Sin embargo, al final, algunos creen que, como todo esta relacionado, sabremos reconocer el mensaje que trata de enviarnos π y que, hasta el momento no hemos sabido comprender. Y, por otra parte, existen otras cuestiones que también estamos tratandode dilucidar para aproximarnos a esa realidad incomprendida que, estándo aquí, no podemos ver. Por ejmplo:

 

 

Roger Penrose dedicó bastante más tinta en defender  los argumentos de Shadows of Mind que en escribir dicha obra. En una de sus contrarréplicas, publicada en la revista Psyche (Enero, 1996), nos ofrece una de las versiones más claras de su famoso argumento.

Supongamos que todos los métodos de razonamiento matemático humanamente asequibles válidos para la demostración de cualquier tesis están contenidos en el conjunto F. Es más, en F no sólo introducimos lo que entenderíamos como lógica matemática (axiomas y reglas de inferencia) sino todo lo matemáticamente posible para tener un modelo matemático del cerebro que utiliza esa lógica (todos los algoritmos necesarios para simular un cerebro). F es, entonces, el modelo soñado por cualquier ingeniero de AI: un modelo del cerebro y su capacidad para realizar todo cálculo lógico imaginable para el hombre. Y, precisamente, ese es el modelo soñado porque la AI Fuerte piensa que eso es un ser humano inteligente. Así, cabe preguntarse: ¿Soy F? Y parece que todos contestaríamos, a priori, que sí.

                     ¿Es la verdad inalcanzable?

Sin embargo, Roger Penrose, piensa que no, y para demostrarlo utiliza el celebérrimo teorema de Gödel, que venimos a recordar a muy grosso modo: un sistema axiomático es incompleto si contiene enunciados que el sistema no puede demostrar ni refutar (en lógica se llaman enunciados indecidibles). Según el teorema de incompletitud, todo sistema axiomático consistente y recursivo para la aritmética tiene enunciados indecidibles. Concretamente, si los axiomas del sistema son verdaderos, puede exhibirse un enunciado verdadero y no decidible dentro del sistema.

Si yo soy F, como soy un conjunto de algoritmos (basados en sistemas axiomáticos consistentes y recursivos), contendré algún teorema (proposiciones que se infieren de los axiomas de mi sistema) que es indecidible. Los seres humanos nos damos cuenta, somos conscientes de que ese teorema es indecidible. De repente nos encontraríamos con algo dentro de nosotros mismos con lo que no sabríamos qué hacer. Pero en esto hay una contradicción con ser F, porque F, al ser un conjunto de algoritmos, no sería capaz de demostrar la indecibilidad de ninguno de sus teoremas por lo dicho por Gödel… Una máquina nunca podría darse cuenta de que está ante un teorema indecidible. Ergo, si nosotros somos capaces de descubrir teoremas indecidibles es porque, algunas veces, actuamos mediante algo diferente a un algoritmo: no sólo somos lógica matemática.

Claro que, cómo podría un robot imitar nuestros múltiples, locos  y dispares pensamientos:

  • Los Computadores nunca podrán reemplazar la estupidez humana.
  • El hombre nace ignorante,  la educación lo idiotiza.
  • Una persona inteligente resuelve problemas, el genio los evita.
  • Las mujeres consideran que guardar un secreto, es no revelar la fuente.
  • Todas las mujeres tienen algo bonito… así sea una prima lejana.
  • La felicidad es una lata de atún, pero con el abrelatas un poco distante.
  • El único animal que no resiste aplausos es el mosquito.
  • El amor está en el cerebro, no en el corazón.
  • Definición de nostalgia “es la alegría de estar triste”.
  • “Mi segundo órgano favorito es el cerebro”.

 

Vale, ¿y qué consecuencias tiene eso? Para la AI muy graves. Penrose piensa no sólo que no somos computadores sino que ni siquiera podemos tener un computador que pueda simular matemáticamente nuestros procesos mentales. Con esto Penrose no está diciendo que en múltiples ocasiones no utilicemos algoritmos (o no seamos algoritmos) cuando pensemos, sólo dice (lo cual es más que suficiente) que, habrá al menos algunas ocasiones, en las que no utilizamos algoritmos o, dicho de otro modo, hay algún componente en nuestra mente del cual no podemos hacer un modelo matemático, qué menos que replicarlo computacionalmente en un ordenador.

Además el asunto se hace más curioso cuanto más te adentras en él. ¿Cuáles podrían ser esos elementos no computables de nuestra mente? La respuesta ha de ser un rotundo no tenemos ni idea, porque no hay forma alguna de crear un método matemático para saber qué elementos de un sistema serán los indecidibles. Esto lo explicaba muy bien Turing con el famoso problema de la parada: si tenemos un ordenador que está procesando un problema matemático y vemos que no se para, es decir, que tarda un tiempo en resolverlo, no hay manera de saber si llegará un momento en el que se parará o si seguirá eternamente funcionando (y tendremos que darle al reset para que termine). Si programamos una máquina para que vaya sacando decimales a pi, no hay forma de saber si pi tiene una cantidad de decimales tal que nuestra máquina tardará una semana, seis meses o millones de años en sacarlos todos o si los decimales de pi son infinitos. De esta misma forma, no podemos saber, por definición, qué elementos de nuestra mente son no computables. A pesar de ello, Penrose insiste en que lo no computable en nuestra mente es, nada más y nada menos, que la conciencia, ya que, explica él, mediante ella percibimos la indecibilidad de los teoremas. Es posible, ya que, aunque a priori no pudiéramos saber qué elementos no son decidibles, podríamos encontrarnos casualmente con alguno de ellos y podría ser que fuera la conciencia. Pero, ¿cómo es posible que nuestro cerebro genere conciencia siendo el cerebro algo aparentemente sujeto a computación? Penrose tiene que irse al mundo cuántico, en el que casi todo lo extraño sucede, para encontrar fenómenos no modelizables por las matemáticas y, de paso, resolver el problema del origen físico de la conciencia.

Las neuronas no nos valen. Son demasiado grandes y pueden ser modelizadas por la mecánica clásica. Hace falta algo más pequeño, algo que, por su naturaleza, exprese la incomputabilidad de la conciencia. Penrose se fija en el citoesqueleto de las neuronas formado por unas estructuras llamadas microtúbulos. Este micronivel está empapado de fenómenos cuánticos no computables, siendo el funcionamiento a nivel neuronal, si acaso, una sombra amplificadora suya, un reflejo de la auténtica actividad generadora de conciencia. ¡Qué emocionante! Pero, ¿cómo generan estos microtúbulos empapados de efectos cuánticos la conciencia? Penrose dice que no lo sabe, que ya bastante ha dicho…

O sea señor Penrose, que después de todo el camino hecho, al final, estamos cómo al principio: no tenemos ni idea de qué es lo que genera la conciencia. Sólo hemos cambiado el problema de lugar. Si antes nos preguntábamos cómo cien mil millones de neuronas generaban conciencia, ahora nos preguntamos cómo los efectos cuánticos no computables generan conciencia. Penrose dice que habrá que esperar a que la mecánica cuántica se desarrolle más. Crick o Searle nos dicen que habrá que esperar a ver lo que nos dice la neurología… ¡Pero yo no puedo esperar!

 

 

 

Además, ¿no parece extraño que la conciencia tenga algo que ver con el citoesqueleto de las neuronas? La función del citoesqueleto celular suele ser sustentar la célula, hacerla estable en su locomoción… ¿qué tendrá que ver eso con ser consciente? Claro que en el estado actual de la ciencia igual podría decirse: ¿qué tendrá que ver la actividad eléctrica de cien mil millones de neuronas con que yo sienta que me duele una muela?

     Todo eso está bien pero, ¿Quien es PI?

Desde hace aproximadamente unos 5000 años, el hombre ha utilizado  objetos que ruedan para ayudarse en sus tareas, por eso es muy probable que haya descubierto ese “3 y pico” hace muchos años, pues es imprescindible para calcular y resolver problemas que involucraran estos cuerpos. Cuenta la historia, que los antiguos egipcios en el 1600 a. de C. ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente:
“Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo”.
Si llamamos A al área del círculo, ésta será igual a 8/9 del diámetro al cuadrado
     A=(8/9 d)^2
Como   d=2r entonces   A= 2r^2 x 64/81  = 4r2 x 64/81  = r2 x 256/81
Así vemos como  π adoptaba el valor 256/81, aproximadamente 3,16.  En Mesopotamia, más o menos por la misma época, los babilonios utilizaban el valor 3,125 (3+1/8) según  la Tablilla de Susa.
Mientras que los geómetras de la Grecia clásica sabían que la razón entre la longitud de una circunferencia cualquiera y su diámetro es siempre una constante (el número al que ahora llamamos pi). También conocían y habían conseguido demostrar que tanto la razón entre el área de un círculo y su diámetro al cuadrado, como la del volumen de una esfera y el cubo de su diámetro eran constantes (desconocidas en aquel momento, libro XII de “Los Elementos” de Euclides).
Fue Arquímedes en el siglo III a. de C. quien determinó que estas constantes estaban estrechamente relacionadas con π. Además, utilizó el método de exhaución, inscribiendo y circunscribiendo en una circunferencia, polígonos de hasta 96 lados y consiguiendo una magnífica aproximación para la época.
Lo cierto es que, desde tiempos inmemoriales, vamos tras la huella del saber, tratando de adentrarnos en el conocimiento de las cosas que nos rodean, del mundo en el que vivímos, de la Galaxias que nos acoge y en fin, del Universo y la Naturaleza que guarda todos los secretos que deseamos desvelar y, como nosotros somos parte de esa Naturaleza, es posible, quer todas las respuestas que buscamos esté, desde el principio, gravada en nosotros y, sólo con el tiempo, podrán aflorar y llegar a nuestras mentes que tratamos de comprender a veces, con frustración y sufrimiento ante la impotencia de no saber…lo que pueda haber en el interios de tan complejo “universo”.
emilio silvera

Marte: cada día menos misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Planeta Tierra pequeño

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Ni la NASA, se tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Claro que después, parece que recapacitaron y enviaron al planeta Marte ingenios robotizados que forman ya una larga lista y, cada una de esas misiones, nos posibilitaron conocer mejor aquel planeta. Se encontró hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  Sabemos, por las maravillosas fotografías allí tomadas, que el planeta conoció mejores tiempos en los que, mares y océanos y grandes conterrías de agua, eran lo natural y hemos podido ver las huellas de todo aquellos maravillosos procesos. Ahora tenemos más que evidencias de la presencia del agua, la presencia de sales y otros vestigios, así lo confirman y, los compuestos para la vida…andan cerca.

 Archivo:Mars global surveyor.jpg

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe. La Curiosity está haciendo su trabajo y hará posible que los datos sobre aquel planeta sean cada vez más abundantes y fiables.

 

                                                                          El Invernadero Marciano

En muchas de las fotografías que nuestros ingenios espaciales han tomado de muchos lugares de Marte, podemos ver, sin ningún lugar a dudas, que el agua corrió rumorosa por sus regajos y canales. Los “ríos marcianos” ofrecen una clara evidencia de que el planeta fue en algún momento más caliente y más húmedo. Pero, ¿cómo pudo ser esto? A primera vista hay una buena razón para creer que Marte debería haber estado aún más frío en el pasado que lo está hoy. Dicha razón tiene que ver con el denominado problema del Sol joven. A medida que el Sol envejece, se hace poco a poco más brillante debido a cambios en su constitución química.

Hace cuatro mil millones de años, habría sido un 30 por 100 más tenue de lo que  es hoy, reduciendo drásticamente su efecto calentador sobre el lejano Marte. Esto estaría contrarrestado en parte por el calentamiento geotérmico, producido por la radiactividad y el calor almacenado procedente de la formación del planeta, y ambos efectos fueron mucho más fuertes en el pasado. Sin embargo, el flujo de calor geotérmico por sí sólo no compensaría el efecto del Sol joven, tenue, y hay que encontrar otras razones para un clima más tibio.

La manera más fácil de hacer un planeta más caliente es utilizando el efecto invernadero. Los gases invernadero tales como el dióxido de carbono actúan como un parasol, atrapando el calor del Sol cerca de la superficie del planeta. Hoy la atmósfera marciana es demasiado delgada para producir mucho calentamiento por efecto invernadero, pero ciertamente habría sido mucho más espesa durante los primeros mil millones de años. Como sucede con la Tierra, Marte adquirió una densa atmósfera inicial tanto por la degasificación del planeta como por el aporte de sustancias volátiles por parte de cometas, asteroides y planetesimales helados. Un CO2 abundante habría elevado la temperatura de modo espectacular.

Gullied Trough Wall

Sin la presencia de agua, nunca se podrían formar estas figuras que vemos ahí. La erosión peroducida por el paso del agua, es inconfundible. En Marte había agua en abundancia que corría por su superficie, y, hoy, sabemos que sigue ahí congelada en la interperie y, no podríamos decir, en qué estado está en el subsuelo.

Aunque los científicos conjeturan que Marte debe de haber tenido mucho más CO2 en el pasado, no es fácil dar una cifra para ello. Primero hay que determinar dónde ha ido a parar el CO2. Con mucha probabilidad, la mayor parte de él se perdió en el espacio como resultado de impactos cósmicos masivos. La colisión de cometas grandes con planetas provoca erosión por impacto, que vacía la atmósfera. En el caso de Marte, el resultado final fue un aire poco denso, pero durante el propio período de bombardeo, la presión habría fluctuado de forma incontrolada. Los cálculos sugieren que Marte perdió el 99 por 100 a partir de entonces debido a procesos diversos. Si estos números son correctos, implican que Marte puede haber tenido en el pasado una presión atmosférica mil veces más alta que la actual, suficiente para elevar la temperatura por encima del punto de congelación y mantener incluso un extenso océano.

Omega Pyroxene Detection

Existen marcas de las señales dejadas en las costas por los océanos de Marte. La subida del agua en bajamar y pleamar, dejaron señales inconfundibles de que, el océano estuvo allí. No hay dudas de que Marte tuvo alguna vez una atmósfera gruesa, puesto que las paredes de los cráteres producidos por impactos más antiguos han sufrido una fuerte erosión. Cráteres de menos de 15 kilómetro han sido completamente aniquilados. Por el contrario, los últimos cráteres apenas están erosionados. Tras datar el cambio, los investigadores creen que la atmósfera se redujo espectacularmente no mucho después del final del último bombardeo intenso, hace 3.800 millones de años.

La mayoría de las inundaciones catastróficas parecen haber ocurrido antes o aproximadamente en esa época, porque los canales de descarga están adornados por un montón de cráteres pequeños y bien conservados. Es la falta de erosión durante la mayor parte de la historia marciana la que ha mantenido sus cursos de agua extraordinariamente antiguos en una condición virginal. En la Tierra, ningún valle fluvial sobreviviría durante miles de millones de años.

Una vez que acabó el bombardeo, el dióxido de carbono de Marte siguió fugándose, por varias causas. Parte de él escapó al espacio, parte se disolvió en el agua o quedó absorbido en el regolito, y una gran cantidad puede haber quedado incorporada en carbonatos u otros minerales en las rocas. Sin algún proceso compensatorio, el CO2 hubiera sido engullido en muy poco tiempo. Probablemente, el calentamiento geotérmico invirtió algunos de estos procesos y devolvió parte del CO2 a la atmósfera.

artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars

Hasta el momento hemos podido enviar allí a distintos ingenios en forma de sondas espaciales y naves que, han hecho un buen trabajo y nos han acercado a la realidad de un planeta que, posiblemente, en su subsuelo, pueda contener algunas formas de vida. El Tiempo pasa, la técnica avanza y… ¿Que nos impedirá, más adelante, enviar robots más especializados para que, de una vez por todas investiguen si hay vida en el subsuelo del planeta?, o, todavía mejor, ¿Un viaje tripulado por astronautas una vez que logremos los conocimientos necesarios para asegurar sus vidas?

Durante unos cientos de millones de años puede haber habido una presión  atmosférica moderadamente alta y un calentamiento asociado por efecto invernadero. Finalmente, sin embargo, el calor geotérmico desapareció, el reciclaje del CO2 flaqueó, y la presión atmosférica cayó en picado, produciendo el desierto liofilizado que vemos hoy en Marte.

El hecho de que parezca que algunos valles fluviales han sido excavados en fecha relativamente reciente sugiere episodios ocasionales de calentamiento. Una posible explicación procede de procesos de realimentación. Si un calentamiento geotérmico local o un estallido de vulcanismo llegasen a liberar repentinamente grandes cantidades de agua en la superficie, entonces un montón de dióxido de carbono disuelto se escaparía con ella. Esto, a su vez, elevaría la temperatura, con lo que se fundiría más agua y se liberaría más CO2. A medida que el agua fundida inundaba las bajas tierras congeladas, calentaría el regolito liberando aún más CO2. En total, podría haberse liberado en el planeta de esta forma incontrolada una cantidad suficiente de dióxido de carbono para crear temporalmente una atmósfera más densa con un calentamiento pronunciado por efecto invernadero.

Archivo:VallesMarinerisHuge.jpg

¿Cuántas historias nos podrían contar los geólogos mirando está imagen?

Los Valles Marcianos que tardaron millones ede años en formarse, y, toda la orografía del planeta, nos habla de un pasado mejor, en el que el agua, estaba presente en abundancia y en los distintos estados en que son conocidos en la Tierra.

Otro mecanismo comodín concierne al movimiento del planeta. Marte tiene una órbita bastante excéntrica, y ninguna luna que pueda estabilizar su eje de giro. Habría habido veces en que condiciones favorables de los movimientos de rotación y orbital condujeran a un calentamiento solar considerablemente aumentado. En ocasiones, el eje de rotación podría haberse inclinado mucho, de modo que los polos recibieran más luz del Sol que las regiones ecuatoriales. Esto hubiera fundido los casquetes polares y producido un efecto invernadero en aumento. En el balance global, episodios repetidos de inundación, formación de océanos y glaciación, seguidos por largos períodos de inactividad, parecen más probables que el simple enfriamiento ininterrumpido.

Respecto a la posibilidad de vida, el hecho de que Marte  estuviese caliente y húmedo hace entre 3.800 y 3.500 millones de años es altamente significativo, pues significa que Marte se parecería a la Tierra en una época en que la vida existía aquí. Esto ha llevado a algunos científicos a concluir que Marte habría sido también en esa época un lugar apropiado para la vida. Por sí misma, sin embargo, la presencia de agua líquida es sólo una parte de la historia. Lo que hace que las perspectivas de vida parezcan tan buenas es que Marte no sólo tiene agua líquida, sino también volcanes.

¿Hubo vida en Marte?

 

Montañas Heladas de Marte

 

Lo que sí hay son heladas montañas y abundantes volcanes que nos hablan de su actividad del pasado.

 

La montaña marciana del Monte Olimpo se eleva 27 kilómetros sobre el macizo de Tharsis y tiene 550 kilómetros de diámetro. Medida por medida, es la montaña más grande de su tipo en el Sistema Solar, equivalente a amontonar siete montes Everets de la Tierra. La importancia del Monte Olimpo no está en su tamaño, sino en el hecho de que es un volcán. Donde se dan juntos volcanes y agua, pueden aparecer fuentes calientes: sistemas hidrotermales como los de la Tierra que posiblemente fueron un hogar para los primeros organismos. ¿Floreció también la vida microbiana en Marte hace 3.800 millones de años, quizá en alguna fuente burbujeante en la pendiente del Monte Olimpo, o en las profundidades de las rocas porosas por debajo de un mar marciano hace tiempo desaparecido?

 

 

            La menor Gravedad de Marte, hace posible que sus montañas, sean inmensas, mucho mayores que las de la Tierra.

Hace cuatro mil millones de años, Marte aún resplandecía con el calor de su formación. La radiactividad calentaba la corteza. Los impactos cósmicos fundían la superficie. A medida que el planeta luchaba para deshacerse de este calor primordial, escupía lava de los volcanes a una escala masiva, creando inmensas llanuras de roca fundida similares a los mares de la Luna. A medida que la corteza se enfriaba lentamente, este vulcanismo declinaba continuamente: para la época que cesó el bombardeo intenso, estaba básicamente confinado a tres regiones principales: Tharsis, Elysium y Hellas. Si hay volcanes vivos hoy en Marte, no están manifestando ningún signo de actividad. Sin embargo, ha habido erupciones a lo largo de toda la historia marciana: por ejemplo alrededor del monte Olimpo dentro de los últimos mil quinientos millones de años, y cerca de Alba Patera en épocas tan recientes como hace quinientos millones de años. Puesto que es poco probable que Marte estuviera  volcánicamente activo durante cuatro mil millones de años sólo para cesar su actividad en épocas relativamente recientes, parece razonable concluir que siguen existiendo algunos puntos calientes, probablemente en el subsuelo profundo.

Valle Marineris, un extenso valle de arena

Marte tiene regiones que nos son tan familiares como las de la Tierra

En el pasado remoto debe haber habido muchas oportunidades para que se formasen  fuentes calientes alrededor de chimeneas termales, dada la abundancia de agua en el planeta. Hay clara evidencia de la interacción de agua y volcanes en los exámenes fotográficos. Muchas de las inundaciones fueron probablemente desencadenadas por  lava que fundía el permafrost y el hielo del suelo, y se puede ver como algunos cursos de agua emergen claramente desde debajo de los flujos de lava. Los canales de desagüe se acumulan también alrededor  de la región altamente volcánica de Tharsis. En otros lugares, densas redes de valles decoran los flancos de los volcanes.

Hay colinas de cima plana que se parecen a las tablas montañosas de Islandia, donde la lava ha rezumado desde debajo del hielo. Cordilleras de forma característica en Elysium llevan también la huella de una combinación de lava y hielo. Todo esto constituye una fuerte evidencia circunstancial de sistemas hidrotermales en el antiguo Marte, aunque todavía no han sido detectados depósitos minerales específicos, lo que sería un signo claro y evidente.

El Monte Olimpo del Planeta Marte

                                                                          El Monte Olimpo

Mientras esperan nuevas misiones marcianas, los científicos de la NASA han estado ocupados en identificar puntos en la superficie del planeta donde podría haber tenido lugar actividad hidrotermal. La ladera del volcán Hadríaca Pladera parece un buen lugar. Aquí se encuentran muchos valles fluviales enmarañados que fluyen desde el borde de la antigua caldera, cruzados por un canal espectacular que emerge abruptamente a mitad de pendiente. Otro volcán, Apollinaris Patera, domina una región de aspecto singularmente brillante cerca del borde de la caldera, que podría ser un depósito mineral de fuente caliente. Un volcán similar en el área llena de cráteres conocida como Terra Cimmeria ha erosionado fuertemente las pendientes y está situado en el comienzo de un enorme curso de agua.

Muchos valles fluviales en Marte se dan en terreno caótico, donde hay grandes bloques de roca en masas revueltas. Se cree que esta topografía se formó cuando la roca fundida se introdujo en el hielo del suelo. Cuando el hielo se fundió, el agua fluyó haciendo que la tierra colapsara de una forma azarosa. Tales áreas serían un lugar perfecto para que aparecieran sistemas hidrotermales poco profundos.

Si, en efecto, la vida se asentó en una fuente caliente, quizá haya dejado restos fosilizados. Es probable que los fósiles marcianos hayan soportado las inclemencias del tiempo mejor que sus homólogos terrestres debido a la relativa falta de erosión climática. Futuras misiones de aterrizaje podrían buscar muestras para traer a la Tierra. Otros depósitos de fósiles potenciales incluyen valles fluviales, donde las inundaciones han podido arrastrar minúsculos organismos marcianos a las charcas estancadas, y la enorme grieta del Valle Marineris, donde estratos profundos han quedado expuestos. También tienen interés los lechos lacustres secos, en cuyos sedimentos se habrían podido depositar microbios. El cráter conocido como Gusev parece un candidato prometedor, puesto que un gran río desembocó una vez en él. Debe haber habido allí hace tiempo un lago profundo, con montones de sedimentos en el fondo.

                                                  La misión Pathfinder

El primer y pequeño paso siguiendo estos indicadores llegó en julio de 1977, cuando la misión Pathfinder depositó con éxito la primera nave espacial en Marte desde los tiempos de las Vikingo. Con su pequeño vehículo todo terreno Sojourner, la Pathfinder transmitió una gran riqueza de datos desde la boca de la llanura inundada Ares Vallis. En el terreno próximo a la nave espacial, hay esparcidas bolsa de rocas arrastradas por el torrente. Estos detritos podrían incluir fragmentos de un antiguo sistema hidrotermal, o incluso fósiles de microbios de la subsuperficie profunda llevados a la superficie con la inundación y transportados corriente abajo. Por desgracia, la Pathfinder no tenía capacidad de verificar estas conjeturas.

En septiembre de 1997, Mars Global Surveyor entró en órbita. Estaba diseñada para cartografiar la superficie del planeta con precisión en una escala de un metro y proporcionó una valiosa información sobre la historia hidrológica de Marte y los probables refugios para la vida. Hay Imágenes que nos hablan de una de la evidencia de una antigua orilla oceánica, charcas secas dentro de un cráter e incluso indicios de depósitos minerales asociados con sistemas hidrotermales, todo lo cual favorece las perspectivas de vida pasada.

Hemos buscado la evidencia de la vida en aquel planeta y, no se descarta la idea de que, si seguimos insitiendo, la vida en Marte, aparecerá en forma fósil referida a la que estuvo presente en el pasado y, posiblemente, en los túneles y grutas que existen como vestigios de la rica vida volcánica del planeta, se encontrarán, formas de vida presente que vendrán a confirmar que, la vida, es algo natural en todo nuestro universo. Simplemente requiere del tiempo necesario y de las condiciones idóneas para su aparición.

emilio silvera

 

 

 

 

¿Vida de Silicio? ¿Será posible?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Yo sigo pensando (sin negar nada de otros posibles caminos),  que no es el Silicio,  sino el Carbono,  el que trae consigo la posibilidad de la Vida en el Universo conocido. Conforme a las leyes que rigen nuestro Universo y las conocidas interacciones que tienen con la materia, es el Carbono el que, por sus excepcionales cualidades, puede proporcionarnos una cantidad de variedades y adaptabilidad que, ni el Silicio y cualquier otro elemento parece tener…pero, ¿quién sabe?

http://www.yalosabes.com/images//vida-silicio.jpg

Anoche acabé de repasar el pequeño librito de Asimov “Cien preguntas básicas sobre Ciencia” y, de entre todas ellas, os he sacado la que aquí os transcribo por ser un tema que muchas veces hemos comentado en esta página. Asimov, como sabéis, era químico y le gustaba la Ciencia en General, él se metía de cabeza en todos los campos y, para dejar volar su imaginación, se refugiaba en la Ciencia ficción, parcela en la que, no salió mal parado al conseguir grandes éxitos.

“Todos los seres vivientes, desde la célula más simple hasta la sequoia más grande, contienen agua, y además, como la molécula más abundante, con mucho. Inmersas en el agua hay moléculas muy complejas, llamadas proteínas y ácidos nucleicos, que al parecer son características de todo lo que conocemos por el nombre de vida. Estas moléculas complejas tienen una estructura básica compuesta en cadenas y anillos de átomos de carbono. A casi todos los carbonos van unidos uno o más átomos de hidrógeno. A una minoría, en cambio, van ligadas combinaciones de átomos como los de oxígeno, nitrógeno, azufre y fósforo.

Los átomos de silicio reemplazan a los de carbono dentro del grafeno.

Los átomos de silicio reemplazan a los de carbono dentro del grafeno.¿Lo hará también para la vida?

Expresándolo con la máxima sencillez podemos decir que la vida, tal como la conocemos, está compuesta de derivados de hidrocarburos en agua.

¿Puede la vida estar compuesta de otra cosa? ¿Existen otros tipos de moléculas que proporcionen la complejidad y versatilidad de la vida, algo distinto del agua que proporcione, sin embargo, las propiedades poco usuales, pero necesarias, que sirven como trasfondo de la vida?

¿Es posible concebir algo parecido al agua que pudiera sustituirla? Las propiedades del amoníaco líquido son las más afines a las del agua. En un planeta más frío que la Tierra, por ejemplo, Júpiter, donde el amoníaco abunda en estado de líquido mientras que el agua está solidificada, puede que sea concebible una vida basada en el amoníaco.

El amoniaco está constituido por moléculas de composición NH3. Los átomos del hidrógeno son equivalentes. La molécula tiene, por tanto, forma piramidal es decir presenta una hibridación sp3, donde tres de los orbitales se solapan con los hidrógenos y el que resta se queda con los electrones no compartidos. Los ángulos de enlace son algo menores que los de un tetraedro debido a la nube electrónica del par solitario que los reduce a un ángulo de 107º 20´. El nitrógeno ocupa el vértice de una pirámide, cuya base es un triángulo equilátero formado por los tres átomos de hidrógeno.

Así que, en el amoniaco tenemos átomos de hidrógeno unidos al nitrógeno , que es un átomo pequeño y electronegativo, por lo que el amoniaco presentará enlaces intermoleculares de puntes de hidrógeno al igual que la molécula de agua.El hecho de que el amoniaco presente este tipo de enlace entre sus moléculas hace que sus puntos de fusión y ebullición, el calor de vaporización, la constante dieléctrica, etc… sean anormalmente altos.

Bianca Atwell y el átomo

          Mirando dentro del átomo…

Por otro lado, hay que decir que si el hidrógeno va unido a tantos puntos de la cadena de carbono es porque se trata de un átomo muy pequeño que se acopla en cualquier lugar. El átomo de flúor es parecido al de hidrógeno en algunos aspectos y casi tan pequeño como él. Así pues, igual que tenemos una química de los hidrocarburos podemos tener una química de los fluocarburos, con la única salvedad de que éstos son mucho más estables que aquéllos. Quizá en un planeta más caliente que la Tierra podría concebirse una vida a base de fluorocarburos.

Pero ¿y en cuanto al átomo de carbono? ¿Existe algún sustituto? El carbono puede unirse a un máximo de cuatro átomos diferentes (que pueden ser también de carbono) en cuatro direcciones distintas, y es tan pequeño que los átomos de carbono vecinos se hallan suficientemente próximos para formar un enlace muy fuerte. Esta característica es la que hace que las largas cadenas y anillos de carbono sean estables.

Glucosa

Se puede ver que la glucosa se compone de seis átomos de carbono (Carbo…) y los elementos de seis moléculas del agua (…hidrato). La glucosa es un azúcar simple, en el sentido de que a nuestra lengua su sabor es dulce. Hay otros azúcares simples que también habrás escuchado:

  • Fructosa
  • Galactosa
  • Lactosa
  • Sacarosa
  • Maltosa

La glucosa, fructosa y galactosa se conocen como monosacáridos. Lactosa, sacarosa, maltosa y son llamados disacáridos (que contienen dos monosacáridos).

El silicio es, después del oxígeno (O) el segundo elemento más abundante en la tierra: la corteza terrestre está formada en aprox. 28 % de silicio. Cada átomo de silicio central puede enlazarse adicionalmente con dos átomos de carbono, normalmente en grupos metilo (CH3). En los átomos de silicio de los extremos se suelen enlazar tres grupos metilo. El silicio es un elemento tetravalente, es decir, que puede formar 4 enlaces covalentes. En la tabla periódica se encuentra en el grupo IV, justo debajo del carbono (C). El silicio presenta una gran afinidad con el oxígeno.

El silicio se parece mucho al carbono y también puede unirse a un máximo de cuatro átomos diferentes en cuatro direcciones distintas. El átomo de silicio, sin embargo, es mayor que el de carbono, con lo cual las combinaciones silicio-silicio son menos estables que las de carbono-carbono. La existencia de largas cadenas y anillos de átomos de silicio es mucho más improbable que en el caso de carbono.

Lo que sí es posible son largas y complicadas cadenas de átomos en las que alternan el silicio con el oxígeno.

Moléculas de dióxido de silicio formando una macla de cristales de cuarzo. Créditos: www.123rf.com

Personalmente creo que el Silicio dará más juego en el campo de la I.A. (Vida Artificial) que en esta otra clase de vida que nosotros representamos.

La estructura de la silicona contiene átomos de silicio y oxígeno alternantes en unidades periódicas, llamadas siloxano. Las moléculas formadas por varias unidades de siloxano se denominan polisiloxano o silicona. Cada átomo de silicio puede unirse a otros dos átomos o grupos de átomos, y este tipo de moléculas se denominan “siliconas”.

A la molécula de silicona pueden ir unidos grupos de hidrocarburos o de fluorcarburos, y estas combinaciones podrían resultar en moléculas suficientemente grandes, delicadas y versátiles como para formar la base de la vida. En ese sentido sí que es concebible una vida a base de silicio.

Pero ¿existen realmente esas otras formas de vida en algún lugar del universo? ¿O serán formas de vida basadas en una química completamente extraña, sin ningún punto de semejanza con la nuestra?

Quizá nunca lo sepamos.”

Al menos de momento, la vida basada en el Silicio ha sido cosa de la Ciencia ficción, nada hemos podido descubrir que nos indique esa dirección y, desde luego, aunque nunca podemos negar nada (el universo y su diversidad de mundos es muy complejo), afirmar que existe la vida basada en el Silicio, no tiene ninguna base científica.

El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio, puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14.

[foto de la noticia]

En esta segunda imagen, obtenida por el mismo grupo de investigación, se observan los orbitales moleculares de la molécula (PTCDA) que en este caso está depositada sobre los átomos de silicio.

Parafraseando al premio Nobel Richard Feynman, efectivamente “hay un gran espacio al final”. Tenemos ante nosotros un universo de tamaño diminuto que justo ahora estamos comenzando a explorar, un lugar en donde los materiales se comportan de diferente manera y cuyas extrañas propiedades podemos aprovechar para desarrollar una mejor tecnología.

Tendrás este material la propiedad bioquímica para poder, a partir de ahí, otras formas de vida. La bioquímica que conocemos está basada en el Carbono pero…¡quién sabe! Es tan grande el Universo, son tantos los mundos que están alumbrados por estrellas distintas a las que… por distintas razones podríamos pensar que…Por ejemplo, pensemos en Titán.

Se trata de una molécula de Silicio. Se ha especulado con la posibilidad de encontrar vida en Titán, la luna de Saturno. Sin embargo los científicos creen que de existir sería una vida de tipo microbiana basada probablemente en el silicio debido a las bajas temperaturas, escasez de agua y la falta de oxígeno de su entorno.

Suponen también que su hábitat serían los hidrocarburos que se encuentran en Titán en forma líquida y que sus procesos biológicos serían muy distintos a los que conocemos, al ser el silicio más pesado que el Carbono. Son muchas las cosas que desconcemos y, de nada de lo que podamos encontrar, en el vasto universo, podremos sorprendernos.

Los Cristales de Cuarzo son una sorprendente creación de la Naturaleza, con dos moléculas de Silicio y una de Oxigeno (Si2 O) en su configuración química, podría decir que son agua fosilizada, su particularidad se podría explicar como catalizadora ya que enfoca, almacena, aumenta y transforma cualquier forma de energía. Muchas son las bellas formas que en la Naturaleza se pueden configurar con Silicio pero la vida…

Yo, de momento, apuesto por el Carbono y, algo me dice que, aunque existan seres distintos a nosotros (que existirán), estos, como nosotros, también estarán basados en el Carbono. Pienso que la mecánica del universo se rige por las leyes que conocemos y, siendo así (que lo es), todo lo que aquí ha ocurrido también podrá ocurrior en cualquier lugar lejano. La materia está conformada de la misma manera en todas partes y, sus transiciones de fase, tanto aquí como allí, siempre serán las mismas y, si es así…La Vida, será también la misma en todas partes independientemente de las formas que puedan adoptar en función de otros factores como gravedad del planeta, lejanía de su estrella, campo electromagnético, etc. etc.

Bueno, ya veremos si tenemos la oportunidad de comprobarlo.

emilio silvera

Divagando con los pensamientos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es una de las grandezas del ser humano, el sentimiento del Amor es el que salva la especie de tantos y tantos defectos como tiene y, por ese camino del más profundo de los sentimientos, nos lleva a poder preservar a nuestra especie y hace posible que perdure a través de los tiempos.

Muchos han sido los símbolos del Amor que han surgido a lo largo de la Historia y, algunos, han quedado para la posteridad como el Romeo y Julieta de Shakespeare, Los Amantes de Turuel

En los primeros años del siglo XIII vivían en la ciudad de Teruel Diego (Juan) de Marcilla e Isabel de Segura, cuya temprana amistad se convirtió pronto en amor. No querido por la familia de Isabel, debido a que carecía de bienes, el pretendiente consiguió un plazo para enriquecerse. Así pues, partió a la guerra y regresó a Teruel justo cuando había expirado el plazo. Para entonces, Isabel ya era esposa de un hermano del señor de Albarracín. Pese a tal hecho, Juan logró entrevistarse con Isabel en su casa y le pidió un beso; ella se lo negó y el joven murió de dolor. Al día siguiente se celebró el funeral del joven en San Pedro; entonces, una mujer enlutada se acercó al féretro: era Isabel, que quería dar al difunto el beso que le negó en vida; la joven posó sus labios sobre los del muerto y repentinamente cayó muerta junto a él.

Incluso el Amor entre Salomón y la Reina de Saba ha sido descrito tanto en la Biblia como en el Corán, el legendario romance ha dado pie a lo largo de la historia para generar desde poesía épica hasta superproducciones hollywoodenses, pasando por supuesto por novelas y magníficas óperas. Ahora bien, lo que no se sabe con absoluta seguridad, más allá de la identidad y la nacionalidad de la bella reina, es si realmente existió o simplemente ha sido una extraordinaria leyenda que comenzó a gestarse antes de Cristo y continúa hasta nuestros días. De todos modos, muchas son las historias que se cuentan de ella y aunque ni la nacionalidad ni su nombre están claros, podemos decir, por ejemplo como ya se dijo anteriormente que los árabes la conocen como Bilquis, los griegos como Minerva Negra, y para los etíopes es Makeda.

Cabe destacar que arqueólogos alemanes han encontrado los restos del palacio de la legendaria reina de Saba en la localidad de Axum, en Etiopía, y desvelado con ello uno de los mayores misterios de la antigüedad, según ha anunciado la Universidad de Hamburgo. Las investigaciones han revelado que el primer palacio de la reina de Saba fue trasladado poco después de su construcción y levantado de nuevo orientado hacia la estrella de Sirius, destacan en un comunicado los arqueólogos que han encontrado los restos de esta residencia del siglo X a.C. bajo el palacio de un rey cristiano. Según su hipótesis, Menelik I, rey de Etiopía e hijo de la reina de Saba y del rey Salomón de Jerusalén, fue quien ordenó levantar el palacio en su lugar final. El hallazgo de este palacio resuelve algunos de los misterios que rodean a esta reina, sobre la que hablan centenares de leyendas, relatos de la Biblia o del Corán.

En la mitología griega, Narciso era un joven conocido por su gran belleza. Acerca de su mito perduran varias versiones. En primer lugar, hablaré de la versión helénica del mito.

Se trata de una historia moral en la que el orgulloso e insensible Narciso es castigado por los dioses por haber rechazado a sus pretendientes masculinos. Se cree que es una historia moralizante dirigida a los adolescentes griegos de la época. Hasta hace poco la única fuente de esta versión era un fragmento de Pausanias (9.31.7), 150 años posterior a Ovidio. Una versión muy similar fue descubierta en el llamado “Papiro de Oxyrhynchus” en el año 2004, una versión muy anterior a la de Ovidio en al menos unos cincuenta años.

En la historia helénica el joven Ameinias ama a Narciso pero es rechazado cruelmente por él. Como una forma de burlarse de Ameinias, Narciso le entrega una espada, que Ameinias utiliza para suicidarse ante las puertas de la casa de Narciso, mientras reza a la diosa Némesis pidiéndole que Narciso un día conozca el dolor del amor no correspondido.

Esta maldición se cumple cuando Narciso se enamora de su propia imagen reflejada en un estanque e intenta seducir al hermoso joven sin darse cuenta de que se trata de él mismo hasta que intenta besarlo. Entristecido de dolor, Narciso se suicida con su espada y su cuerpo se convierte en una flor.

La versión romana es distinta. En la versión contada por Ovidio, la ninfa Eco se enamora de un vanidoso joven llamado Narciso, que era hijo de la ninfa Liríope (“la que tiene forma de lirio”). Céfiso, un dios del río, se había sentido atraído por Liríope y la había rodeado con sus corrientes, atrapándola y concibiendo un hijo con ella.

Preocupada por el bienestar de su hijo, Leirope decidió consultar al vidente Tiresías sobre el futuro de su hijo. Tiresías le dijo a la ninfa que Narciso viviría hasta una edad avanzada mientras nunca se conociera a sí mismo.

Tiresías predijo que si se veía su imagen en un espejo sería su perdición, y así Liríope evitó siempre espejos y demás objetos en los que su hijo pudiera verse reflejado. Narciso creció así hermosísimo sin ser consciente de ello, y haciendo caso omiso a las muchachas que ansiaban que se fijara en ellas.

Un día mientras Narciso estaba cazando ciervos, la ninfa Eco siguió sigilosamente al hermoso joven a través de los bosques, ansiando dirigirse a él pero siendo incapaz de hablar primero, ya que la diosa Hera la había maldecido a sólo poder repetir lo que otros decían. Cuando finalmente Narciso escuchó sus pasos detrás de él preguntó: “¿Quién está ahí?” y Eco respondió: “¿Quién está ahí?”, y continuaron hablando así, pues Eco sólo podía repetir lo que otros decían, hasta que Eco se mostró e intentó abrazar a su amado. Sin embargo, Narciso rechazó a la ninfa y le dijo vanidosamente que le dejara en paz, y se marchó dejándola sola. Eco quedó desconsolada y pasó el resto de su vida en soledad consumiéndose por el amor que nunca conocería hasta que sólo
quedó su voz.

Por lo que se refiere a Narciso, un día sintió sed y se acercó a beber a un arroyo, quedando fascinado por la belleza de su reflejo, por lo que no se atrevió a beber por miedo a dañarlo e incapaz de dejar de mirarlo. Ovidio escribió: “No sabe qué es lo que ve, pero lo que ve le quema”. Finalmente murió de inanición contemplando su reflejo y la flor que lleva su nombre creció en el lugar de su muerte.

20090104040322-316349-654060005-porque-1-h175926-l.jpg

El Amor siempre dio mucho juego y su variedad es inmensa, muchas son las clases de amores que podemos sentir y, sin embargo, el que nos lleva a crear una familia… es ¡El auténtico Amor! El del Hombre por la Mujer y por los hijos que vendrán, frurto de ese Amor verdadero.

¿Explicar el Amor? Bueno, muchos han sido los poetas que lo intentaron y, aunque algunos estuvieron cerca, relatar un reflejo literal de lo que el Amor es, nunca resultó fácil y, fueron porecisamente aquellos que lo sintieron profundamente los que, al ser aceptados o rechados… lo pudieron expresar mejor.

Como explicar los colores
a quien jamás los vio.
Como explicar la música
a quien jamás la oyó.
Como explicar el amor
a quien jamás lo sintió.
Como puede explicar el amor
siquiera quien lo sintió.
Como explicar que es razón,
razón de vivir
razón de morir.

Por ejemplo leyendo Bécquer  gira casi en su totalidad, en torno a la figura de la mujer, ciclos, temática, y dualidades, surgen del amplio universo femenino, y de las relaciones impregnadas de amor y de fatalidad que desencadenan, pero cierto es, que en ambos autores, la mujer transciende la mera función de musa inspiradora de todo un corpus literario, es decir, no se conforman únicamente con desempeñar el rol de damas inalcanzables o las simples destinatarias de poemas adulatorios, sino que arrastran al poeta a un torbellino casi místico y desgarrador, a la condena gloriosa de inmortalizarlas en su obra, no se resignan a ser el convidado de piedra o la musa inerte y volátil de unas rimas, son mujeres de piel y sangre que se cruzaron en el camino de la poesía y en el de la vida de nuestros autores. Así pues, la mujer no nace de la poesía, sino que la poesía nace, vibrante y arrolladora, de ellas.

“Para que lo leas con tus ojos grises,
Para que lo cantes con tu clara voz
Para que llenen de emoción tu pecho
Hice mis versos yo.
Para que encuentres en tu pecho asilo
Y los des juventud, vida y calor,
Tres cosas que yo (ya) no puedo darles
Hice mis versos yo.
Para hacerte gozar con mi alegría,
Para que sufras tú con mi dolor,
Para que sientas palpitar mi vida,
Hice mis versos yo.
Para poder poner ante tus plantas,
La ofrenda de mi vida y de mi amor,
Con alma, sueños rotos, risas, lágrimas,
Hice mis versos yo.”

Sí, pudimos evolucionar y llegar a sentir el amor, ese motor que mueve el mundo

¿Cómo se puede explicar el amor? El materialismo no puede hacerlo. Ni los átomos, ni las moléculas, ni las células resuelven el problema. ¿Quién está capacitado para explicar el sentir de las neuronas? ¿Qué mecanismo nos mueve al amor? ¿Cómo es ese vínculo tan fuerte?

Al igual que la fuerza invisible y poderosa del electromagnetismo y la gravedad, la del amor también está ahí, y cuando es verdadero el sentimiento, la fuerza es mayor que las cuatro fuerzas de la naturaleza juntas. Si estamos dispuestos a entregar la vida, ¿hay algo más fuerte que eso en el universo? Creo que no.

¿Qué explica la turbadora resonancia “espiritual” de una caricia?

¡Nada!, pero ocurre. Al igual que el suave pasar de los dedos sobre el teclado del piano nos ofrece una melodía que eleva nuestra alma, una caricia del ser amado no sólo nos hace sentirnos bien, es algo más grande y más elevado, nos hace mejores.

La verdadera experiencia del amor es misteriosa y está más allá de la mera sexualidad e incluso de la misma razón; es tan grande y profundo este misterio que en realidad se escapa de nuestro entendimiento, y de ningún modo puede expresarse en términos de biogenética. Son cuestiones de la mente que no hemos llegado a comprender y que está muy por encima de las simples cuestiones materiales.

Qué razón tenía aquel que dijo: “No sólo de pan vive el hombre”. La metáfora lo dice todo.

Bueno, la frase queda bonito pero, el Amor hay que expresarlos cada día…¡de tántas maneras!

Platón también negó rotundamente esa reducción a lo físico y hablaba de un infinito inventado, algo transfigurado a través del amor, la llave que abre el corazón humano.

En el ámbito humano, después del amor con mayúsculas (no todos son capaces de amar), la ética es el arte de lo mejor y la cultura es su cultivo, que tiene un medio ideal en los libros que, desde las historias infantiles, de fantasía, de conocimiento científico o de cualquier temática, siempre, en cada momento de nuestras vidas, nos aportan algo para que seamos mejores.

La verdad es que en los tiempos que vivimos, la cultura es difícil y encuentra poca tierra de cultivo. Prima la zafiedad. Programas de televisión de los que podemos sentir vergüenza. Se ha perdido el pudor y el respeto, y los valores tradicionales se están perdiendo, y vamos, si alguien no lo remedia, hacia una sociedad del vale todo.

Ingresar a la página del Gran Hermano

Parece mentira que se pueda llegar a tal degradación Humana ¿Qué tienen en sus cabezas?

No existe moralidad colectiva, y en aquellos casos aislados en que está presente, sus poseedores son mirados por los demás como bichos raros y llegan a procurar aislarlos en ese mundo de moral y honestidad que ellos ni entienden ni quieren.

Aunque -parcialmente- somos libres de elegir, la verdad es que la mayoría está condicionada por el medio; una realidad que les arrastra y no tienen ni la personalidad ni la fuerza para escapar del torbellino que irremisiblemente los engulle.

Tenemos que enseñar a los niños a leer, aprender a decir no en el momento oportuno. Un no en ese momento delicado de sus vidas puede ser la diferencia entre ser feliz o ser un desgraciado.

Si enseñamos bien a los niños de hoy, no tendremos que enviar a la cárcel a los hombres de mañana.

La educación tiene su seno en el núcleo familiar; allí es donde todo se cuece, y los niños se miran en el espejo de los padres. Aquellos que dejan sus obligaciones y trasladan la responsabilidad a los maestros y la escuela, mal lo llevan. En los Centros educativos se enseñan otras cosas.

No existen soluciones mágicas. Todo es disciplina y trabajo. Sin sacrificio nada conseguimos nunca. Es la constancia y el querer conseguirlo lo que finalmente nos trae el resultado. Lo que tú hagas es lo que recibirás; ésa es la única y cruda realidad.

Lo cierto es que, ni el saber ni tampoco el Amor, llegan a través de fluctuaciones cuánticas, aunque algunos, relacionan el comportamiento de nuestros cerebros con esa extraña teoría de lo muy pequeño, y, desde luego, la Química y la Física, ¿qué duda cabe? están presentes en todos los procesos que sentimos los seres humanos y, el Amor, es uno de ellos que, sin ser material, si proviene de lo tangible.

Sí, muchos han sido los símbolos ideados para significar la Libertad pero, como este de arriba…

¿Qué es la libertad? Yo la entiendo como el poder de hacer en todo momento lo que desees, y la verdad, en ese sentido la libertad no existe. ¿Quién puede hacer eso? Los padres estamos supeditados a los hijos; la mujer y el hombre están supeditados a sus estudios y a sus trabajos. El banquero está supeditado a conservar e incrementar su dinero. El gobernante está sometido (es un decir) a procurar el bien común y los Jueces a impartir justicia, siendo así, la libertad que tenemos es parcial e intermitente, nunca general y continua. Sí, tenemos un amplio margen para elegir nuestro camino en la vida, y algunos, ni eso han tenido.

Muchos esquivaron el camino al confundir el bien con el placer o este con la felicidad. Estos conceptos que, mal entendido, nos puede llevar a la ruina. El deseo constante de placer artificial puede convertir el equilibrio de la mente humana en algo peligroso e inestable.

Estas cosas que aquí comento ahora, creo que en el fondo son conocidas por todos, y sin embargo, pocos las cumplen, y por no prescindir de sus pequeños placeres (el bar y los amigos, la fiesta sin fin, acompañar a su equipo de futbol dejando a la familia desamparada, etc.) dejan arruinar las vidas de sus hijos que dejan acompañados de esa fatídica maquinita de juegos infernales que, aun costando una pequeña fortuna, les compran para que les dejen tranquilos.

                                                Hablemos de cosas materiales

Los átomos y moléculas de las que estamos formados, es probable que sean comunes a organismos de cualquier otro lugar del universo. Pero la manera específica en que estas moléculas se juntan y las formas específicas y fisiológicas de los organismos terrestres pueden ser sumamente diferentes de lo que es corriente en nuestro planeta, a consecuencia de sus diferentes historias evolutivas.

Cuando tratamos de considerar cuáles han de ser las estrellas a estudiar y examinar buscando posibles señales de radio dirigidas a nosotros desde planetas lejanos, generalmente se presta más atención a estrellas semejantes a nuestro Sol, alegando, con razón, que la búsqueda e investigación deben iniciarse con un tipo de estrella en la que sepamos con certeza que hay vida (la estrella que tiene un sistema planetario y que en uno de sus planetas ha surgido la vida, la única conocida, es nuestro Sol). De esta manera, se buscan signos de vida inteligente en estrellas como (y parecidas a) la nuestra. El proyecto Ozma fue el primer intento para buscar señales de radio en las estrellas Tau Ceti y Épsilon Eridani, ambas estrellas con masa, radio, edad y composición muy parecidas a las de nuestro Sol.

                                            Esas señales que nunca llegan

Pero limitar la búsqueda a una exclusividad de este tipo de estrellas sería un error. Hay estrellas con menos masa y luminosidad que la de nuestro Sol que tienen existencias más antiguas, y por tanto evolucionadas en un mayor grado. Estas estrellas diminutas o “enanas” K y M pueden tener miles de millones de años más que el Sol.

Si suponemos que cuanto más larga sea la vida de un planeta, más inteligentes serán (por evolución) los organismos que en él se han desarrollado, entonces debemos dirigir nuestra atención a las estrellas no sólo G, sino también a las K y M, evitando el impulso ególatra de que la única vida existente en el universo, por fuerza, será como la nuestra. ¡Un error enorme!

Es verdad que este tipo de estrellas con planetas a su alrededor, podría objetarse que son mundos más fríos que la Tierra, y que la vida en ellos es menos probable. Claro que este diagnóstico parte de un error muy común en nosotros; pensamos en un tipo de vida similar o muy parecido al nuestro, y además, al ser las estrellas más pequeñas, generan una fuerza de gravedad menor y los planetas están mucho más cerca del Sol que los de nuestro sistemas solar, con lo cual, puede que la cercanía equilibrase la balanza y no los haga tan fríos como creemos. En realidad, en el cosmos existen muchas más estrellas K y M que estrellas G.

Carl Sagan, enamorado de todos estos problemas del universo, nunca descartaba nada. Decía que la mayor parte de la vida surge en los planetas y allí reside. Sin embargo, se preguntaba:

“¿Acaso pudiera ver organismos que habitan en las profundidades del espacio interestelar, superficies o interiores de estrellas, o incluso otros objetos cósmicos incluso más exóticos?”

Es tan difícil responder a esa pregunta como a tantas otras que, con nuestra actual ignorancia, es imposible dar respuesta. Si evolucionamos hasta seres de pura energía, podríamos estar en cualquier parte del universo.

Los seres vivos tal y como los conocemos, necesitan de la materia para reproducirse y, por lógica, se deben asentar en aquellos lugares que, estando presente la energía, puedan reproducirse en un tiempo prudencial y adecuado a la especie de que se trate, y acorde con la complejidad del individuo que está surgiendo a la vida.

Claro que no podríamos negar y sí imaginar organismo desarrollándose en planetas con atmósferas que lentamente vayan alejándose en el espacio, permitiendo que los organismos se adapten gradualmente a unas condiciones cada vez más duras, hasta llegar a la adaptación total de un medio interestelar. Seres así podrían vivir casi en cualquier parte del universo.

                                   ¿Quién sabe sino estará al acecho?

Lo más probable, sin descartar nada, será una especie diferente de organismo interestelar mucho más posible: seres inteligentes de planetas parecidos al nuestro, pero que han trasladado su campo de actividad al volumen mucho más vasto del espacio interestelar.

Los seres, en nuestro lejano futuro tecnológico, deberán poseer capacidades que hoy en día ni siquiera podemos imaginar. Es verdad que el hombre moderno (nosotros), es casi idéntico al hombre de hace 50.000 años. Sin embargo, cuando pasen algunos millones de años, todo será distinto. Aparecerán nuevas formas humanas evolucionadas por pequeñas y paulatinas mutaciones encaminadas a sobrevivir en otros medios.

No puedo dudar de que tales sociedades futuras deberán dominar la materia y la energía de las estrellas y de las galaxias, y tendrán la sabiduría suficiente para explotar la radiación y la energía de los agujeros negros para ponerla a su servicio.

Pensemos en el largo viaje que unos organismos hicieron para evolucionar del mar a la tierra firme. Ahora esos organismos que tienen su origen en las profundidades marinas, sólo se sientes “en casa” en la tierra, su nuevo medio conquistado a través de mil peripecias y peligros. De la misma manera, en el futuro, dejaremos la tierra firme para habitar en enormes ciudades volantes por las profundidades del universo, e innumerables mundos serán poblados con sociedades nuevas que llenarán de ruidos el ahora silencioso universo.

Esporas espaciales insensibles a la radiación pueden llegar hasta…

Las maravillas del universo son inagotables, y muy lentamente tenemos acceso a ellas. Hay lugares con tres soles de distintos colores: amarillo (como el nuestro), azul y verde, o blanco y rojo. Hay dos que casi se están tocando, sólo los separa una ligera y brillante materia cósmica que parece pura luz. Hay un mundo que tiene miles de lunas, y no muy lejos de él brilla un Sol que no es mayor que nuestro planeta Tierra. He podido ver un núcleo atómico de 3.000 m de diámetro que gira 160 veces por segundo. Hay soles que se desplazan por el universo a velocidades enormes y bacterias que escapan de las galaxias y vagan por el cosmos hasta encontrar un planeta donde instalarse. Las nubes de gas y polvo inundan los espacios entre las galaxias, y después de girar durante miles de millones de años, se juntan y forman nuevas galaxias de estrellas y planetas.

También, quién sabe, pueden existir lugares fuera de nuestro universo (algunos científicos así lo creen).

Para nosotros, insignificantes criaturas de una grandeza enorme, el universo resulta pavoroso. Pero también fascinante y maravilloso. ¡Qué paradoja!

  Mundos que ni podemos imaginar y, seguramente portadores de vida

Si, algo puede dar miedo y placer al mismo tiempo y, aunque parezca una paradoja, así es. Nos produce miedo su enormidad y nuestra ignorancia. Nos produce placer lo que vamos descubriendo y fascinación los misterios que encierra y a los que nuestra curiosidad y osadía no resiste la necesidad de desvelar.

No parece que nuestra evolución sea debida a senderos evolutivos predeterminados que conducían infaliblemente, desde formas simples, a lo que somos, al hombre; más bien, la evolución procede de un modo convulsivo, sin un plan determinado, y la mayor parte de formas de vida conducen a callejones sin salida en la evolución. Así se han extinguido tantas, y continuarán extinguiéndose. Esperemos que no estemos en la lista.

En realidad, somos el producto de una larga serie de accidentes biológicos. En la perspectiva cósmica no tememos razones de pero para pensar que seamos los primeros, que seremos los últimos o los mejores.

Sin embargo, esa seria de accidentes biológicos, ¿fueron fortuitos? Ya me gustaría poder responder a esta pregunta.

A lo que sí puedo responder es al hecho innegable de que, en lo más profundo de nuestro ser habita un ente superior, algo grande capaz de lo más sublime. ¿Puede algo así surgir de la nada?

Me gustaría estar en ese tiempo futuro en el que la ciencia es tan avanzada que tiene como reliquias antiguas teorías como la relatividad, la mecánica cuántica y la teoría de supercuerdas. ¿Qué maravillas no tendrán entonces?

La ciencia avanza despacio, no porque no interese a la gente, sino porque los gobiernos no le destinan los presupuestos necesarios para que su avance esté relacionado con el conocimiento que ya poseemos. Tenemos magníficos físicos, astrofísicos, astrónomos, matemáticos y otros científicos de las distintas disciplinas que viven en la inseguridad de que el político o el organismo de turno le conceda la subvención necesaria para realizar sus proyectos. Es una vergüenza.

A pesar de todos los inconvenientes, los avances científicos y del conocimiento no pueden ser frenados. El querer saber y descubrir está asociado con una especie de energía inagotable que finalmente vencerá.

En realidad, la ciencia es el poder. Por tal motivo, todos los políticos tratan de manejar el ámbito científico por si surge algo que puedan utilizar en beneficio propio.

La gente sencilla sí se interesa por los temas científicos, lo que ocurre es que en la niñez, en las escuelas, la enseñanza es muy deficiente, y cuando llegan a mayores, son unos incultos científicos que, de manera interesada, han sido dejados en la ignorancia por algunos.

Es penoso que el mundo nos sea desconocidos y, nuestra obligación es cambiar eso. Procuremos saber y tratar de que todos tengamos un mínimo de conocimientos sobre las cuestiones importantes de nuestro mundo y nuestro universo. Saber cuestiones básicas como el por qué brillan las estrellas, cómo se expande el universo y que la Tierra es una nave espacial que nos lleva en un viaje alrededor del Sol a 30 Km/s.

No puedo olvidar la fascinación que sentí (sin entenderlo) cuando vi por vez primera ante mis ojos E = mc2, su sencillez y la enormidad del mensaje que encierra, me dejaron totalmente sorprendido y al mismo tiempo, maravillado.

Pues bien, lo mismo que me ocurrió a mí, seguramente le ocurrirá a muchos otros si les damos la oportunidad de conocer, de saber sobre las cosas que les rodea y con las que conviven, sin que tengan la menor idea de qué son y cómo funcionan. La gravedad, el electromagnetismo, las fuerzas nucleares… creo que todo esto, sin tecnicismos ni profundidades científicas, puede ser explicado para dar un conocimiento básico que, al menos, evite la actual ignorancia, y para conseguirlo, el único camino es la divulgación.

Comenzamos hablando del Amor que, al fin y al cabo, también es una manifestación producirda en las criaturas que el Universo creó para poder ser observado.

emilio silvera