Nov
26
Conociendo el Universo
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (1)
El abuelo le explica al niño, su nieto, como son las teorías actuales del Universo. La gran importancia que tienen las estrellas para creae los elementos de los que estamos hechos. Cómo se pueden formar agujeros negros a partir de estrellas masivas. Le habla de las cuatro fuerzas fundamentales y de las constantes universales, le explica como creemos que comenzó el Universo a partir de una singularidad de densidad y energía “infinitas”… Trata en fin, de que el niño, aprenda y comprenda, con sus palabras sencillas, lo que es el mundo, cómo pudimos llegar aquí y, sobre todo, trata de inculcarle la idea de que, nosotros, como todo en el Universo, estamos hechos de cositas pequeñas que llamamos átomos que, a su vez, está conformado por infinitesimales partículas subatómicas.

Cuando el niño crezca y estudie todo aquello que su abuelo (ya desaparecido) le inculcó, podrá descubrir como aquellas teorías han cambiado, y, nuevos descubrimientos nos llevaron a rectificarlas por otras más veraces y ajustadas a esa realidad que incansables perseguimos.
¿Sabremos algún día, como son las cosas?
Lo que sucede primero, no es necesariamente el principio. Antes del “principio”, de ese principio que nosotros llamamos Big Bang, tuvieron que suceder muchas cosas que, de momento, no hemos podido llegar a conocer, nos topamos con la oscuridad del Tiempo de Planck, esa infinitesimal fracción en la que, según parece, debieron ocurrir muchas cosas que desconocemos y que, pudiera ser, el verdadero principio de todo.

Siguiendo la estela que dejan las invariancias gauge, gracias a la importante aportación iniciada en 1954 por los trabajos de Yang y Mills, ya se ha conseguido la primera gran unificación, la de la fuerza electrodébil ( electromagnética + débil) que mereció en 1979 el Premio Nobel de Física para sus autores, Glashow, Salam y Eeinberg. Aunque el camino no se encuentra, ni mucho menos, libre de formidables obstáculos, sabemos que las cuatro interacciones fundamentales de la naturaleza están regidas por este tipo de invariancias. que relacionan las fuerzas con la propia geometría de la materia-espacio-tiempo, tal como aspiraba Hermann Weyl . En su libro : “Tiempo, espacio,materia” ( 1922), comentaba con emoción: “… Han llegado a nuestro oído algunos acordes vigorosos de aquella armonía de las esferas con que soñaban Pitágoras y Kepler.” Hay cosas que no cambian nunca, si nos detenemos a recordarlas te puede apetecer hablar de ellas. Hace tiempo, los sucesos que constituían historias eran las irregularidades de la experiencia: lo inesperado, lo catastrófico y lo ominoso.
La Luna llena, amiga de los enamorados a los que alumbra con sus reflejos de plata, siempre ha sido igual y, a los humanos habitantes del planeta Tierra, ese objeto familiar nos acompañó a lo largo de los siglos para hacer posible que, pudiéramos comprobar que su comportamiento era estable e inamovible. Invariante.
El 19 de enero de 1995 ocurrió el sismo de Kobe, Japón, uno de los terremotos más devastadores de la historia. En general las consecuencias de los sismos son evaluadas en número de víctimas: Shaanxi, China 1556, 830.000 víctimas; Calcuta, India 1737, 300.000; Lisboa, 1755, 60.000; Mesina, Italia 1908, 85.000; Tokio-Yokohama, 1923, 143.000; Añadir, Marruecos 1960, 14.000; Ancash, Perú 1970, 52.000; Tang-Shan, China 1976, 400.000; Irán 1978, 25.000; México, 1985, 10.000; Armenia 1988, 25.000. Pero el sismo de Kobe, aparte de los 6.000 muertos y los 30.000 heridos, tuvo nefastas consecuencias de carácter económico: dejó a 300.000 personas sin hogar, destruyó o dañó severamente 100.000 edificios, se produjeron 148 incendios que destruyeron un área de 65 hectáreas y los daños se estimaron inicialmente en 200.000 millones de dólares. El caso de Kobe es particular, porque en Japón se consideraba que era una zona de riesgo sísmico moderado. Los hechos demostraron lo contrario: Kobe se encuentra en la zona de encuentro de cuatro placas tectónicas. Aunque estos sucesos, en un principio, nos parezcan catastróficos (que lo son), también es verdad que son la manera de reciclaje que tiene la Naturaleza para hacer surgir las nuevas cosas y la vida nueva.
Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y predecibilidad del mundo. Pese a la concatenación de movimientos caóticamente impredecibles de átomos y moléculas, nuestra experiencia es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las “leyes” de la Naturaleza (Interacción Gravitacional, Fuerzas Nucleares Débil y Fuerte y el Electromagnetismo) que gobiernan como cambian las cosas. También, poco a poco, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la experiencia. Son las Constantes de la Naturaleza. Dan al Universo su carácter distintivo y lo singularizan de otros que podríamos imaginar. Capturan de una vez nuestro máximo conocimiento y nuestra máxima ignorancia sobre el Universo.
Constantes fundamentales, valores supuestamente invariables de ciertas magnitudes referidas a los constituyentes más básicos del Universo. Precisamente esas constantes con esos valores, son los que permiten que nuestro mundo sea como es. Pues, aunque las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de la masa y tiempo alrededor de su invariancia no podemos explicar sus valores. Nunca hemos podido explicar el valor numérico de ninguna de las constantes de la Naturaleza. Hemos descubierto otras nuevas, hemos relacionado las viejas y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un profundo secreto. Para buscarla necesitamos desentrañar la teoría más fundamental de las leyes de la Naturaleza.
Esas constantes de la Naturaleza están estrechamente emparentadas con las constantes de nuestros cuerpos que, como todo en el Universo, están conectados por unos hilos invisibles, a los parám,etros, constantes y fuerzas que todo lo rigen. Descubrir si las constantes que las definen están determinadas y conformadas por alguna consistencia lógica superior o sigue habiendo un papel para el Azar. Nuestras primeras ojeadas revelan una situación muy peculiar, Mientras parece que ciertas constantes estuvieran fijadas, otras tienen espacio para ser distintas de las que son y algunas no parecen afectadas por ninguna otra cosa en el Universo. ¿Caen sus valores al Azar? ¿Podrían ser realmente diferentes? Y, si lo fueran, ¿Podría existir vida en el Universo?
Sí, las Constantes Universales siempre dieron mucho que hablar
Si esas constantes variaran, ¿Qué sería de nosotros? Sabemos que, universos con las constantes ligeramente alteradas nacerían muertos, privados del potencial para desarrollar y sostener el tipo de complejidad organizada que llamamos vida. ¿Son las Constantes de la Naturaleza realmente constantes? Un experimento llevado a buen fin por un grupo de investigadores, han puesto en práctica un método por ellos ideado mediante el cual, han podido examinar las Constantes de la Naturaleza durante los últimos 11.000 millones de años de la historia del Universo. Considerando las pautas atómicas que son similares a códigos de barras en la luz que nos llega de Cuásares lejanos, podemos mirar y ver cómo eran los átomos cuando la luz inició su viaje hace miles de millones de años. Así, ¿fueron siempre iguales las constantes de la Naturaleza? La respuesta, inesperada y escandalosa, plantea nuevas posibilidades para el Universo y las leyes que lo rigen.
¿Qué secretos tan profundos se esconden detrás de esta simple ecuación? Desde el comienzo de la “buena” Física, los mejores han tratado de desvelar lo que ahí está escondido. Es la Constante de estructura Fina, otra vez el número puro y adimensional, 137 que guarda los misterios del electromagnetismo, e, la Relatividad de Einstein, c, y, la constante de Planc, h. A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos de la fábrica del Universo misteriosos en su inquebrantable constancia. Son esas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distingue de otros que pudieran existir. Está presente un hilo dorado que teje una continuidad a través del espacio-tiempo y que, afecta a toda la Naturaleza que, de esa manera, se conforma como un todo, como un Sistema cerrado en el que, las constantes marcan un ritmo de funcionamiento y las leyes o fuerzas naturales dicen como deben cambiar las cosas.
Como si fuera un hilo de oro que brotaba del abismo de los tiempos, el Universo unifica, todo lo que dentro de él existe, y, de alguna manera, aunque nos de la sensación de heterogeneidad, al final, todo es lo mismo, es decir, proviene de la misma fuente, simplemente cambia con el tiempo. Lo que hoy es inanimado, mañana estará muy vivo. Lo que hoy no tiene consciencia, mañana la tendrá. Todas las cosas son, aunque no de la misma manera pero, ese simple pensamiento, eleva a todas las cosas a la categoría de SER. Así las cosas, y, con esos datos en las manos, nos aconseja esperar que ciertas cosas sean iguales en otros lugares del Espacio además de aquí, en la Tierra; que esas constantes fueron y serán las mismas en otros tiempos además de hoy; que para algunos casos, ni la historia ni la geografía importan. De hecho, quizá sin un substrato semejante de realidades invariables no podría haber corrientes superficiales de cambio ni ninguna complejidad de mente y materia. Desde entonces, los cosmólogos han encontrado cada vez más formas en que el Universo podría mostrar variaciones en sus constantes definitorias; cada vez más maneras en que la vida podría no haber llegado a existir en el Universo. También han empezado a tener en serio la posibilidad y realidad de otros universos en los que las constantes de la Naturaleza toman valores diferentes. ¿Inevitablemente nos encontramos en un mundo donde las cosas salieron bien? Pero, ¿Cuál era la posibilidad de que todo esto sucediera así?
¿Qué clase de vida -si es que la hubiera- existirían en otros universos? El clima y la topografía de nuestro planeta varían continuamente, como las especies que viven en él. Y lo que es más espectacular, hemos descubierto que todo el Universo de estrellas y galaxias están en estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan unos de otros hacia un futuro que será diferente del presente. Hemos empezado a darnos cuenta de que vivimos en un tiempo prestado, los sucesos astronómicos catastróficos son comunes; los mundos colisionan.

Hasta el momento, hemos tenido mucha suerte (hace no tanto tiempo pasó un pequeño asteroide a unos 40.000 Km de la Tierra). El planeta Tierra ha sufrido en el pasado el impacto de cometas y asteroides. Un día se le acabará la suerte; el escudo que tan fortuitamente nos proporciona el enorme planeta Júpiter, que guarda los confines exteriores de nuestro Sistema Solar, no será capaz de salvarlo. Al final, incluso nuestro Sol morirá. Nuestra Vía Láctea será engullida por un enorme agujero negro central. La vida tal como la conocemos terminará. Los supervivientes tendrán que haber cambiado su forma, sus hogares y su naturaleza en tal medida que hoy, nos costaría llamarlo “vida” según nuestros criterios actuales, a esa existencia prolongada y exenta de enfermedad. Hemos reconocido los secretos simples del Caos y de la impredecibilidad que asedian tantas partes del mundo que nos rodea. Entendemos que nuestro clima es cambiante pero no podemos predecir los cambios. Hemos apreciado las similitudes entre complejidades como esta y las que emergen de los sistemas de interacción humana –sociedades, economías, elecciones, ecosistemas- y el interior de la mente humana.
El Lago Titi-Caca, el caudal de agua dulce mayor del mundo
Debemos procurar que sitios como este perduren, nuestro futuro depende de ellos.
Todas estas sorprendentes complejidades tratan de convencernos de que el mundo es como una montaña rusa desbocada, rodando y dando bandazos; que todo lo que una vez se ha tenido por cierto podría ser derrocado algún día.
Si revisamos las escalas desde un átomo, el ADN, una Bacteria, un insecto, un planeta, un ser humano, un árbol, un meteorito, un asteroide, una estrella, una galaxia, o un cúmulo de galaxias.
Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas crea la estabilidad.
Estas estructuras, podemos decir que son entidades estables que existen en el Universo. Existen porque son malabarismos estables entre fuerzas competidoras de atracción y repulsión. Por ejemplo, en el caso de un planeta, como la Tierra, hay un equilibrio entre la fuerza atractiva de la Gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e (electrón), h (constante de Planck), G (constante de gravitación) y mp (masa del protón).
Hasta tal punto son importantes estas constantes de la Naturaleza que, simplemente con que la masa o la carga del electrón variara una diez millonésima, la vida, no podría existir.
Emilio Silvera V.
Nov
26
La necesidad agudiza la imaginación
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (0)
La fuerza nuclear débil nos habla de materiales que, de manera natural, emiten radiación y se desintegran. Al pensar en la desintegración me ha traído a la memoria aquellos libros de Asimov que nos explicaba cuestiones de ciencia y nos decía existen materiales que también
se desintegran de manera natural y que son materiales fértiles, o que sin serlo, se pueden transformar en otros que sí lo son.
Al hablar de material fértil me estoy refiriendo a núclidos que pueden absorber neutrones para
formar material fisible. El uranio-238, por ejemplo, absorbe un neutrón para formar uranio-239, que se desintegra en plutonio-239. Este es el tipo
de conversión que la imaginación del hombre hace que ocurra en un reactor reproductor.
![]()
Lo explicaré con más detalles: El Reactor Reproductor Rápido es un reactor de neutrones rápidos diseñado para
producir combustible generando más material fisible del que consume. El FBR es uno de los tipos posibles de reactores reproductores.
![]()

Veamos: El uranio-235 es un combustible práctico, es decir, los neutrones lentos son capaces de hacer
que el uranio-235 se fisione, o lo que es lo mismo, se rompan sus átomos en dos, produciendo neutrones lentos, que a su vez inducen otras fisiones atómicas. El uranio-233 y el plutonio-239 son también combustibles nucleares prácticos por las mismas razones.

Desgraciadamente, el uranio-233 y el plutonio-239 no existen en estado
natural sino en trazas mínimas, y el uranio-235, aunque existe en cantidades apreciables, no deja de ser raro. En cualquier muestra de uranio natural, sólo siete de cada mil átomos son de uranio-235, el resto es uranio-238.

Uranio
El uranio natural extraído de las minas contiene un 99´3 % de U-238 y apenas el 0´7 % de U-235.
El uranio-238, la variedad común de uranio, no es un combustible nuclear práctico. Así que, el uranio que más abunda en la naturaleza no sirve como
combustible nuclear. Podemos conseguir que se fisione, pero sólo con neutrones rápidos. Los átomos de uranio-238 que se rompen en dos, producen neutrones lentos, que no bastan para producir o inducir nuevas fisiones. El uranio-238 cabría compararlo a la madera húmeda: es posible hacer
que arda, pero acabará por apagarse.
![]()
El uranio es un elemento químico metálico de color plateado-grisáceo de la serie de los actínidos, su símbolo químico es U y su número atómico es 92. Por ello posee 92 protones y 92 electrones, con una valencia de 6. Su núcleo puede contener entre 142 y 146 neutrones, sus isótopos más abundantes son el 238U que posee 146 neutrones y el 235U con 143 neutrones. El uranio tiene el mayor peso atómico de entre todos los elementos que se encuentran en la naturaleza. El uranio es aproximadamente un 70% más denso que el plomo, aunque menos denso que el oro o el wolframio. Es levemente radioactivo. Fue descubierto como óxido en 1789 por M. H. Klaproth que lo llamó así en el honor del planeta Urano que acababa de ser descubierto en 1781.
Supongamos, sin embargo, que se separa el uranio-235 del uranio-238 (trabajo
más bien difícil) y que se utiliza aquel para hacer funcionar un reactor nuclear. Los átomos de uranio-235 que forman el combustible del reactor se fisionan y esparcen miríadas de neutrones lentos en todas direcciones. Si el reactor está rodeado por una capa de uranio ordinario (que en su mayor parte
es uranio-238), los neutrones que van a parar allí son absorbidos por el uranio-238 y, aunque no pueden hacer que el uranio-238 se fisione, sí pueden provocar otros cambios que finalmente, producirán plutonio-239. Separando este plutonio-239 del uranio (tarea muy fácil), puede ser utilizado como combustible nuclear practico para la fisión.
De esta manera, el reactor nuclear genera nuevo
combustible a partir de un material (uranio-238) que no lo es. Este es el motivo de que al reactor nuclear que hace posible la transformación se le llame “reactor generador”.
Un reactor generador bien diseñado puede producir más plutonio-239 que el uranio-234 consumido para ello. De este modo, las reservas totales de uranio de la Tierra (y no sólo las de uranio-235) se convierten en potenciales de combustible nuclear.
Torio
Carlo Rubbia, exdirector del CERN (los mismos que hicieron el Colisionador de Hadrones) y ganador del premio Nobel de física en 1984, ha trabajado buena parte
de su carrera en el desarrollo de tecnologías para la producción de energía a partir de torio y calcula que con un reactor adecuado, este proceso de fisión podría generar a partir de 1 tonelada del elemento la misma cantidad de energía que 200 toneladas de uranio y 3.500.000 toneladas de carbón.
El torio, tal como
se da en la naturaleza, consiste todo él en torio-232, que al igual que el uranio-238, no es un combustible nuclear práctico, porque requiere neutrones rápidos para fisionarse. Pero si se coloca torio-232 alrededor de un reactor nuclear, sus átomos absorberán los neutrones y, sin experimentar fisión alguna, se convertirán en átomos de uranio-233. Como
el uranio-233 es un combustible práctico que se puede separar fácilmente del torio, el resultado es otra variedad del reactor generador, que convierte las reservas de torio en un combustible nuclear en potencia.


Hasta
que no se descubra otra manera de producir energía, el Uranio seguirá
La cantidad total de uranio y de torio que hay en la Tierra es unas 800 veces mayor que las reservas de uranio-235, lo que significa que el buen uso de los reactores generadores podría multiplicar por 800 la oferta potencial de energía extraída de plantas de fisión nuclear.
En este punto, sin dejar de elogiar la inteligencia del hombre que ha sabido encontrar la manera de transformar una materia inservible en otra practica, hay que decir que la energía de fisión nuclear genera también muchos problemas.
Como estará comprobando al lector de este trabajo
, el autor ha querido esta vez diversificar los temas y plasmar una variedad múltiple que facilite el conocimiento de distintas cosas que ocurren en la naturaleza, o que la mano del hombre hace que ocurran, y todas estas cuestiones tratadas aquí van encaminadas a resolver preguntas que en alguna ocasión nos hemos podido hacer
, tales como:
¿Por qué al calentar un metal se pone primero rojo, luego naranja, después amarillo, pero a continuación blanco en lugar de seguir el espectro y ponerse verde?
¿Y el color en las estrellas?
![]()
![]()
Cuando un herrero está trabajando, el metal adquiere diferentes colores según recibe el calor de la fragua. Primero se mostrará de un rojo intenso, para
ir progresivamente adoptando tonos más claros, pasando del anaranjado al amarillo, y por fin al blanco.
Si se pudiera seguir calentando el hierro, éste adquiriría tonos azulados. Estos cambios en la coloración son una consecuencia directa del aumento de la temperatura, que permitirá mayor maleabilidad. El Cúmulo del Joyero (en la constelación de la Cruz del Sur), fotografiado arriba, muestra cómo ocurre lo mismo con las estrellas, de manera que encontraremos estrellas azules, las más calientes, blancas, amarillas, anaranjadas y rojas, las más “frías”. A veces, estos colores pueden percibirse a simple vista, como
Antares (Alpha Scorpii) que es de color rojo, o Rigel (Beta Orionis) blanco-azulada.
En la Naturaleza rigen las mismas leyes para
todos y, en todas partes se producen los mismos fenómenos debidos a las mismas causas, en este caso: ¡La Temperatura!
Cualquier objeto, a cualquier energía superior al cero absoluto, radia ondas electromagnéticas. Si su temperatura es muy baja, emite sólo ondas de radio largas, muy pobres en energías. Al aumentar la temperatura, radia una cantidad mayor de ondas, pero también
empieza a radiar ondas de radio más cortas (y más energéticas). Si la temperatura sigue subiendo, empiezan a radiarse microondas aún más energéticas y después radiaciones infrarrojas.


Esto no quiere decir que a una temperatura dada sólo se emitan ondas de radio largas, un poco más arriba sólo ondas de radio cortas, luego sólo microondas y después sólo infrarrojos. En realidad, se emite toda la gama de radiaciones, pero siempre hay una radiación máxima, es decir, una gama de longitudes de onda que son las más radiadas, flanqueadas por cantidades menores en el lado de las energías bajas y por cantidades todavía más pequeñas en el de las altas.
Cuando
un objeto alcanza la temperatura del cuerpo humano (37°C), el máximo de radiación se encuentra en los infrarrojos largos. El cuerpo humano también radia ondas de radio, pero las longitudes de ondas más cortas y más energéticas son siempre las más fáciles de detectar por ser los más potentes.
Cuando la temperatura alcanza aproximadamente los 600°C, el máximo de radiación se halla en el infrarrojo corto. Pero a estas alturas la pequeña cantidad de radiación que se halla en el lado de las energías altas adquiere una importancia especial, porque entra ya en la región de la luz visible roja. El objeto reluce entonces con un rojo intenso.
Este rojo constituye sólo un pequeño porcentaje de la radiación total, pero como
da la casualidad de que nuestro ojo lo percibe, le otorgamos toda nuestra atención y decimos que el objeto está al “rojo vivo”.
Si la temperatura sigue subiendo, el máximo de radiación continúa desplazándose hacia
las longitudes de ondas cortas y cada vez se emite más luz visible de longitudes cada vez menores. Aunque el objeto radia más luz roja, se van agregando poco a poco luz anaranjada y luz amarilla en cantidades menores pero significativas. Al llegar a los 1.000°C la mezcla de colores la percibimos como naranja, y a los 2.000°C como amarilla. Lo cual no significa que a los 1.000°C sólo se radie luz naranja y a los 2.000°C sólo se radie luz amarilla, porque si fuese así, habría efectivamente que esperar que lo siguiente fuese “color verde”. Lo que en realidad vemos son mezclas de colores.
Al llegar a los 6.000°C (la temperatura superficial del Sol), el máximo de radiación está en el amarillo visible y lo que llega a nuestros ojos son grandes cantidades de luz visible, desde
el violeta hasta el rojo. La incidencia simultánea de toda la gama de luz visible sobre nuestra retina nos da la sensación de blanco, y de ahí el color del Sol.
Los objetos más calientes aún que el Sol radian todas las longitudes de ondas de luz visible y en cantidades todavía mayores, pero
el máximo de radiación se desplaza al azul, de modo que la mezcla se desequilibra y el blanco adquiere un tinte azulado.
Toda esta travesía se produce para objetos calientes que emiten “espectros continuos”, es decir, que radian luz en la forma de una ancha banda de longitudes de ondas. Ciertas sustancias en condiciones
adecuadas, radian sólo luz de determinadas longitudes de onda. El nitrato de bario radia luz verde cuando se calienta, y con ese fin se lo utiliza en los fuegos de artificio, “calor verde”, podríamos decir.


Nitrato de Bario que produce el color verde en los bonitos fuegos artificiales
¡Qué bonito es saber! Ya me gustaría.

En alguna ocasión todos hemos oído mencionar la palabra “gases nobles”, y sin embargo no siempre sabemos lo que son y el por qué le llaman así. Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.
En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química. Estos nuevos gases (helio, neón, argón, kriptón, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el nombre
de gases inertes.
Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1.962, el nombre
más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados en sociedades democráticas.

La complicada historia del flúor
“Los primeros intentos de aislar este elemento dejaron tras de sí una estela de químicos muertos, los llamados “mártires del flúor”.”
El nombre actual del flúor proviene del latín, fluo, que significa fluir. Con esta palabra bautizaron en la edad media al “flúor espato”, un mineral que se utilizaba en las fundiciones para que el hierro se fundiera a menor temperatura y que también reduce la viscosidad del metal líquido, lo que lo ayuda a fluir con más facilidad a través de los canales y moldes. Como el flúor se aisló por primera vez a partir de este aditivo metalúrgico, a la que hoy en día nos referimos más a menudo como fluorita, se decidió dejarle como nombre la palabra latina del mineral.
Debido a su alta reactividad, no conviene estar alrededor del flúor sin unas medidas de protección muy estrictas. De hecho, los primeros intentos de aislar este elemento dejaron tras de sí una estela de químicos muertos, los llamados “mártires del flúor”.
Flúor
El criptón del manto de la Tierra, recolectado de puntos calientes geológicos en Islandia y las Islas Galápagos, revela una imagen más clara de cómo se formó nuestro planeta.
Es apropiado incluir una descripción de este grupo de elementos conocido en un capítulo dedicado a los halógenos, porque el flúor es el único elemento conocido que entra en combinación química directa con los dos gases nobles más pesados, el xenón y el criptón, resultando en compuestos estables.
Los gases nobles surgen en la naturaleza como constituyentes menos abundantes de la atmósfera. La primera indicación de la existencia de los gases nobles fue divulgada por el químico ingles Cavendish, en 1784.
La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta
distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.
Ahora
bien, el grado de inercia depende de la fuerza con que el núcleo, cargado positivamente y situado en el centro del átomo sujeta a los 8 electrones de la capa exterior. Cuantas más capas electrónicas haya entre la exterior y el centro, más débil será la atracción del núcleo central sobre los electrones de esa última capa de electrones.

El Radón es un gas radiactivo de origen natural procedente de la desintegración radiactiva de pequeñas cantidades de uranio presentes en rocas y suelo, es el responsable de miles de muertes por cáncer de pulmón en Europa cada año. El gas se filtra en los edificios a través del suelo y de los sótanos, puede acumularse llegando a niveles elevados, especialmente en espacios cerrados y poco ventilados.
Quiere esto decir que el gas inerte más complejo es también el menos inerte. El gas inerte de estructura atómica más complicada es el radón. Sus átomos tienen una distribución electrónica de (2,8,18,32,18,8). El radón, sin embargo está sólo constituido por isótopos radiactivos y es un elemento con el que difícilmente se pueden hacer
experimentos químicos. El siguiente en orden de complejidad es el xenón, que es estable. Sus átomos tienen una distribución electrónica de (2,8,18,18,8).
Se sabe desde hace décadas que la abundancia en la Tierra del xenón es menor de lo que debería ser según las proporciones observadas del resto de gases nobles. Las abundancias de estos gases se usan por los geoquímicos para evaluar y datar los principales procesos terrestres, incluyendo la formación de la atmósfera. Para poder hacerlo parten de una hipótesis básica: que los gases nobles son inertes en toda circunstancia. Un trabajo
realizado por Gary Schrobilgen y David Brock, de la Universidad McMaster (Canadá), cuyos resultados se publican en el Journal of the American Chemical Society explica la baja abundancia del xenón y pone en evidencia que el xenón no es tan noble como
se suponía.
Los electrones más exteriores de los átomos de xenón y radón están bastante alejados del núcleo y, por consiguiente, muy sueltos. En presencia de átomos que tienen una gran apetencia de electrones, son cedidos rápidamente. El átomo con mayor apetencia de electrones es el flúor, y así fue como en 1.962 el químico canadiense Neil Bartlett consiguió formar compuestos de xenón y flúor.
Desde entonces se han conseguido formar también compuestos de radón y kriptón. Por eso los químicos rehúyen el nombre
de gases inertes, porque a fin de cuentas, esos gases no son completamente inertes. Hoy día se ha impuesto la denominación de “gases nobles”, y existe toda una rama de la química que se ocupa de los “compuestos de gases nobles”.

Naturalmente, cuanto más pequeño es el átomo de un gas noble, más inerte es, y no se ha encontrado nada que sea capaz de arrancarles algún electrón. El argón, cuya distribución electrónica es de 2,8,8 y el neón, con 2,8 electrones respectivamente, sigue siendo completamente inerte. Y el más inerte de todos es el helio, cuyos átomos contienen una sola capa electrónica con dos electrones (que es lo máximo que puede
alojar esta primera capa) que al estar en la primera linea cerca del núcleo positivo, están fuertemente atraídos al tener su carga eléctrica el signo negativo.
Para
finalizar diré que los gases nobles (gases inertes, gases raros) están clasificados en el grupo 18 (antiguamente 0) de la Tabla periódica de los elementos y se definen por símbolos que responden a: helio (He), neón (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y radón (Rn).

Ya se dijo antes la configuración electrónica de cada uno de ellos y todas las capas internas están completamente ocupadas, lo que hace que estos elementos, por tanto, constituyan la terminación de un periodo y posean configuración de capa completa, por lo que sus energías de ionización son muy elevadas y su reactividad química escasa.
Como son monoatómicos, las moléculas de los gases nobles poseen simetría esférica, y las fuerzas intermoleculares son muy débiles, por lo que sus entalpías de vaporización son muy bajas.
Con todo lo anteriormente expuesto sobre los gases nobles, espero que el lector del trabajo
aquí reflejado pueda tener una idea más amplia y un conocimiento más certero sobre lo que en realidad son los denominados como “gases nobles”.
En comparación con la inmensidad del universo, nos queda aún muchísimo que aprender. Si nos limitamos a nuestro entorno más cercano, la Tierra, ¿Cómo hemos podido llegar tan lejos?

Remamos hacia el Horizonte que nunca podremos alcanzar
¡La curiosidad! y ¡La necesidad! ¡El Instinto! y ¡La Evolución! Todo ello, amigos míos, nos lleva a querer saber y, para ello, debemos desvelar los secretos de la Naturaleza, que por cierto, no resulta nada fácil. Llevamos miles de años intentando comprender y, de momento, sólo sabemos… ¡Algunas cosas!
Emilio Silvera V.
Fuente: Variada y destacando, Cien preguntas básicas sobre ciencia de Asimov.
Nov
25
¿Fue Marte en el lejano pasado, una Tierra en miniatura?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Poco a poco se van conquistando datos (por mucho tiempo desconocidos), que nos llevan a conocer el pasado del Planeta Rojo. Con anterioridad a este trabajo, ya habían conseguido imágenes de los ingenios enviados al planeta, en las que, sin ningún lugar a duda, existían grandes zonas con huellas de la presencia de agua.
Pocas dudas nos pueden caber de que, más adelante, podremos llegar hasta las grandes grutas subterráneas de Marte, es decir, conductos de largos túneles que se formaron por corrientes de lava eyectadas por los volcanes en el pasado del planeta, y, que seguramente, son los lugares en los que podamos encontrar algunos signos de vida.
En profundidades del subsuelo del planeta, en las que las temperaturas son más altas, sonde el agua líquida discurre libremente, en presencia de humedad, habrán surgido líquenes, hongos y posiblemente bacterias, la probable y única forma de vida de aquel pequeño mundo.
Más adelante en próximas misiones, se obtendrán más respuestas a preguntas planteadas que nadie ha sabido contestar.
Emilio Silvera V.
Nov
25
Lo que no induce a duda alguna… ¡Es nuestra Ignorancia!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

La frases del título reconoce que la ignorancia es un estado común que puede ser abrumador, pero también es el primer paso hacia el conocimiento, como decía Sócrates. Yo creo que al ser conscientes de que no sabemos, buscaremos la verdad. El que cree saberlo todo, seguirá en la ignorancia.
Seguimos ante las dudas que no podemos despejar, nos faltan conocimientos y medios para ello. Mientras tanto, seguiremos especulando, creando teorías e imaginando lo que pudo pasar, o, lo que pasó.
Karl Popper
Ya decía el Filósofo: “Cuanto más profundizo en el conocimiento de las cosas, más consciente soy de lo poco que se. Mis conocimientos son limitados, mi ignorancia infinita.”
Nunca podremos saberlo todo sobre todas las cosas, y, desde luego, las preguntas siempre serán más abundantes que las respuestas.
Esta frase refleja la idea de que el conocimiento es finito y la curiosidad es infinita. A menudo se relaciona con la sabiduría de pensadores como Sócrates, quien afirmaba “sólo sé que nada sé”, entendiendo que el saber más profundo reside en reconocer la propia ignorancia y la abundancia de preguntas.

Eso decía el gran Filósofo Descartes
- La importancia de la pregunta: Sugiere que las preguntas son más esenciales para la investigación y el aprendizaje y a seguir aprendiendo.
- La humildad intelectual: Implica una postura de humildad ante la inmensidad del universo y de la vida, reconociendo que nadie puede poseer todo el saber.
- El conocimiento como camino: Refleja la filosofía como un camino de aprendizaje constante, donde cada respuesta abre nuevas preguntas y nos mantiene en un estado de búsqueda y descubrimiento.
-
- Un legado de pensadores: Esta idea ha sido expresada por diversos filósofos a lo largo de la historia, desde la antigüedad hasta la actualidad, reflejando una constante en la condición humana.

Aquellos filósofos naturales que buscaban la verdad

Los viejos vestigios de lo que fue aún perduran y son la huella de aquel mundo que consiguió una cultura increíble
A partir del mundo Clásico:
La Ciencia comenzó en la Grecia antigua clásica, y ahí es donde podemos comenzar a seguir de la pista que nos conduce hasta nuestras ideas actuales sobre la energía de la vida. Los griegos fueron unos
pensadores asombrosamente creativos. Realmente es casi imposible describir claramente lo que los griegos pensaban sobre cualquier tema, porque siempre pensaban de manera muy diferente sobre la misma cosa, nunca estaban satisfechos y conjeturaban diferentes perspectivas que podrían ser, y sobre las mismas cosas discutían, siendo la mayoría sus posturas contradictorias, todos perseguían la verdad que esconde la Naturaleza y les llamaban filósofos naturales. La diversidad de ideas enriquecía los pensamientos que, en realidad, aunque por separado, todos trataban de llegar a esa verdad desconocida.
No podemos dejarlo así y, antes de seguir, habrá que reconocer que, muchos de los conocimientos que manejaban venían de pueblos y culturas anteriores y lejanas, incluso de los sumerios y babilonios, la China, Egipto, la India, Persia…

Luego, los griegos se equivocaron estrepitosamente en relación a muchas cosas. Y esto es en si mismo importante, porque durante
casi dos mil años después de la caída de Atenas, los herederos intelectuales de Grecia en el mundo romano y el islámico, así como en la Europa Medieval y en la del Renacimiento, creyeron que todo lo que habían pensado los griegos era una verdad incuestionable. Las ideas de los sabios de Grecia sobre Filosofía, Ciencia y Medicina fueron asumidas con la misma admiración e igual reverencia que las de Moisés, Jesús y Mahoma sobre religión y ética.
Actualmente sabemos que muchas de las “verdades” descubiertas por los griegos son “falsas”, pero la forma
de sus ideas, el tipo de preguntas a las que respondían, y el modo en que procedieron para responderlas, han tenido una influencia fundamental en el desarrollo del conocimiento y los conceptos modernos. Si no fuera por el relativamente pequeño de pensadores de la Grecia Antigua y Clásica, la Ciencia, la Filosofía, y la cultura occidental. Tal como la conocemos ahora
, no habría existido.

Empédocles (c.490 c.435 a. C.) fue uno de los mayores y mas completos sabios de todos los tiempos, un ejemplo de la enorme diversidad y creatividad de los pensadores de la Grecia Antigua. Nacido en una familia aristocrática de la ciudad-estado de Agrigento, Sicilia, colaboro en un golpe contra la oligarquía que gobernaba la ciudad y le ofrecieron la corona. Tras rehusar, estableció una Democracia y se convirtió el mismo en político. Sin embargo, en su tiempo libro, consiguió llegar a ser también
uno de los mayores poetas, científico, filósofos, y médicos de la época. si esto no fuera suficiente, después del destierro y el exilio de su ciudad, se convirtió en profeta. La leyenda cosas increíbles de Empédocles que hoy día, serian difíciles de admitir como
ciertas.
Empédocles desarrollo la teoría de los cuatro elementos. Que ha sido calificada, por su popularidad y larga vigencia, como la teoría científica de más éxito que se ha formulado jamás, aunque, por supuesto, no era correcta pero, sin embargo, denotaba una intuición de lo que podría ser la realidad de la materia. El, hace más de 2000 años
, ya nos hablaba de elementos al igual que Demócrito lo hizo de átomos.

La Teoría de Empédocles afirmaba que todo lo que existe en el Universo era una combinación de solo cuatro elementos (el refundió ideas anteriores de otros personajes que, como Tales decía que, el Universo estaba hecho básicamente de agua. Anaximandro nos decía que todo estaba conformado por una sustancia desconocida, Anaximandro decía que era el aire el material principal y Heráclito se refería al fuego como el elemento que todo lo transformaba. Empédocles planteo que no existía en absoluto una sustancia fundamental única, sino cuatro elementos (o “raíces”, como el los llamo): tierra, fuego, aire y agua que, mezclados en la debida proporción, conformaban todas las cosas del mundo. El hecho de tener cuatro elementos en lugar de uno era una ventaja, ya que resultaba obvio para
cualquiera que el mundo estaba compuesto por una increíble diversidad de cosas. Y era difícil explicar dicha diversidad si todo estaba hecho de la misma sustancia única. También era difícil explicar como podía cambiar, si todo era, en esencia, lo mismo. Empédocles planteo que cada diferente de cosas tenia proporciones diferentes de los cuatro elementos, y además que cualquier cambio se debía al intercambio de algunos de sus elementos constituyentes. Por ejemplo, dijo que los huesos estaban compuestos de fuego, agua y tierra en la proporción 2:1:1 y la carne estaba compuesta de todos los elementos en proporciones iguales.

Hoy sabemos que todo aquello era una especie de premonición de lo que después seria, y, luego, no tenemos mas remedio que admirar el pensamiento de aquellos hombres sabios que, como
Tales supo darse de la importancia que tenia el agua para
la vida, de Demócrito que abr del átomo 2.000 años antes de que lo descubriera Rutherford y otros, y de los demás pensadores que de una u otra manera, nos dejaron el camino abierto para llegar a la meta del saber.
Sin embargo, la visión que Empédocles tenia del mundo difiere radicalmente de la visión moderna en mucho aspectos: el considero también estas dos fuerzas, el amor y el odio, en un sentido religioso, como una lucha entre
el bien y el mal (identificando cada uno de los cuatro elementos con un dios diferente). Sin embargo, la religión es algo que, al tratarse de fe, tomo un camino divergente con el de la Ciencia que solo se puede asentar en la certeza. Y, desde luego, fue el sabio de Gracia Tales de Mileto el que, un día, dejo de lado la mitología para emplear la lógica en sus postulados.
![]()

Los primeros pensadores (como Anaxímedes) y los últimos (como Demócrito) adoptaron un punto de vista mas moderno que el de Empédocles, y, según el cual, una sustancia constituida por un amplio numero de pequeñas partículas separadas por el espacio vació, y la conversión de un liquido en gas no se debe a un cambio de elementos, sino que dichos elementos se alejan considerablemente unos de otros. Así, el hielo esta formado por moléculas de agua que se mantienen fuertemente unidad, mientras que el agua liquida esta formada por las mismas moléculas de agua, pero en este caso fluyen unas sobre otras, y el vapor, es decir, el agua totalmente evaporada, esta constituidas por las mismas moléculas de agua, pero muy alejadas entre si. –Leucipo y Demócrito (c.460-370 a.C.)- llevaron esta visión del mundo a su extremo mas materialista, tomando la teoría de Empédocles, despojándola de sus componentes religiosos, y añadiendo el vació.
Así, su punto de vista dejo establecido y consistía en afirmar que no existía nada en el mundo salvo un gran numero de partículas diminutas (átomos) que se movían a través del espacio vació y que todo lo conformaban bajo ciertas del estado
de densidad y temperaturas dependiendo de las regiones en las que se encontraran, en cada momento, dichas partículas.
![]()
El Alquimista Pietro Longhi
La Alquimia tiende un puente entre, por una parte
las enseñanzas de la Grecia Antigua y de Roma, y por otra el nacimiento de la Ciencia Moderna en la Europa del siglo XVII. Aunque la investigación de los alquimistas había comenzado 2000 años antes en Alejandría, China y la India, en 1680 Isaac Newton dedicaba aún la mayor parte de su tiempo a este arte misterioso.
Claro que, si hablamos de Alquímía habrá que viajar más lejos, hacia
atrás en el tiempo. Considerada una pseudo-ciencia, la alquimia se practicó aproximadamente el siglo IV a. C. hasta
el surgimiento de la química y las ciencias naturales, a comienzos del XVII. Es cierto que, su época de esplendor se sitúa en la Europa medieval. Sin embargo, la verdadera historia de la Alquimia, nos dice que deberíamos irnos mucho más atrás en el tiempo.
A partir de la etapa final de la Edad Media se escribieron numerosos libros del denominado «Arte Hermético». La palabra alquimia, del árabe al-kimiya, cuyo significado es similar al de química, , sin embargo, una connotación distinta al concepto actual del término, ya que hace
referencia a lo trascendental y espiritual.
Tres fueron los objetivos fundamentales perseguidos por los Alquimistas: La transformación de metales como el plomo y el cobre en metales preciosos como el oro y la plata. También
perseguían crear sustancias curativas de todas las enfermedades y, no pocos dedicaron su esfuerzo a conseguir lo que llamaron el elixir de la inmortalidad.

El Cinabrio, la Piedra filosofal o, el secreto de la !vida eterna!
Ya sabéis, la búsqueda de “La Piedra Filosofal”, la única sustancia capaz de conseguir la transmutación. La verdadera Piedra Filosofal es roja y, tenía sus virtudes que sólo eran conocidas por los alquimistas más expertos y que estaban en posesión de los secretos de la materia transmutada.

Faltaba mucho tiempo para que llegara la tecnología necesaria que les hiciera saber que la verdadera Alquimia natural se producía en las estrellas situadas en el Espacio Interestelar a muchos años-luz de distancia de la Tierra. Sin embargo, ellos, los alquimistas de épocas muy lejanas, buscaron con denuedo los secretos de la materia y creían, de manera firme en el elixir de la juventud y en la transmutación del plomo en oro.
Ellos no sabían que esa Alquimia soñada sólo podía ser hecha en los hornos
nucleares de las estrellas. Allí, sí que se transmutan los elementos y, cuando al final mueren, esas explosiones que llamamos de supernovas, transmutan los materiales en oro y plantino a partir de otros más sencillos y menos valiosos pero, el elixir de la felicidad o la eterna juventud… ¡Qué cosas!

Pero
, sabemos ¿cuál es el origen de la Alquimia? Es muy difícil contestar esa pregunta dando una y un lugar concretos; China, Egipto, Grecia y el Oriente Medio pudieran atribuirse, con el mismo derecho, la paternidad de la Alquimia. Así pues, parece aconsejable ceñirse a la tradición y remontar el arte hermético hasta el propio Hermes -quien fue un rey pre-faraónico-, puesto que él le dio su nombre
. Se le atribuyen varios tratados alquímicos, entre otros, la famosa Tabla esmeraldina, que es, sin duda, el resumen más conciso, si no el más claro, de la Gran Obra.
La Tabla Esmeraldina
“Es verdad, sin mentira, cierto y muy verdadero. Lo que está abajo es como
lo que está arriba, y lo que está arriba es como lo que está abajo, hacer
los milagros de una sola cosa. Todas las cosas vinieron y vienen del Uno, y por mediación del Uno, así todas las cosas han nacido de cosa única por la adaptación. El Sol es el padre; la Luna, la madre; el viento la ha llevado en su vientre, la Tierra es su nodriza. El Padre de toda la Perfección de todo el mundo está aquí. Su potencia está entera si se convierte en tierra.
Separarás la tierra del fuego, lo sutil de lo espeso, suavemente, con gran cuidado. Subirá de la Tierra al Cielo y de bajará a la Tierra y recibirá la fuerza de las cosas superiores e inferiores. Por este
medio, tendrás la gloria de todo el mundo, y por esto también, toda oscuridad huirá de ti. Es la fuerza de toda fuerza, pues vencerá todo lo sutil y penetrará todo lo sólido. Así se ha creado el mundo.
De ahí saldrán admirables adaptaciones, cuyo medio está aquí. Por eso he sido llamado Hermes Trismegisto, porque poseo las tres partes de la filosofía de todo el mundo. Lo que he dicho aquí de la operación del Sol, está cumplido y acabado.”

Según la leyenda, los soldados de Alejandro Magno encontraron dicho texto en lo más profundo de la gran pirámide de Gizeh, que sería el sepulcro de Hermes. Al parecer, este mismo empleó un diamante puntiagudo para
grabar sobre una plaza de esmeralda -de aquí su nombre- las escasas líneas que componen la Tabla y que, arriba quedan reproducidas.
Pero bueno, esa es otra historia que tocara contar en próximo comentario. Por hoy aquí lo dejo.
¡Qué bonito s saber, a mí me gustaría!
Emilio Silvera V.
Nov
25
¿El mundo que se avecina? ¡No me gusta!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
















Totales: 82.534.105
Conectados: 57






































