Oct
22
¿La realidad? ¿Dónde estará?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

No una sino mil veces podemos haber podido hablar del “milagro griego”. La hipótesis es la siguiente: La Ciencia nació en la antigua Grecia alrededor del año 600 a. C. y floreció durante unos pocos cientos de años, aproximadamente hasta
146 a. C., cuando los griegos cedieron su primacía a los romanos y la ciencia se frenó en seco, permaneció en letargo hasta que resucitó en Europa durante el Renacimiento alrededor de 1500. Y, no pocos creen a pie juntillas que eso fue así y que, las personas que habitaron la India, Egipto, Mesopotamia, el África Subsahariana, China, el Continente americano y algún otro lugar con anterioridad al año 600 a. C. no dirigieron el desarrollo de la Ciencia. Cuando descubrieron el fuego, se quedaron esperando tranquilamente a que Tales de Mileto, Pitágoras, Demócrito y Aristóteles inventaran la Ciencia en el Egeo.
Claro que, tal pensamiento es una auténtica barbaridad, pensar eso es un sin sentido. ¿Cómo durante más de mil quinientos años, desde
el final del período griego hasta la época de Copérnico, no se produjo avance alguna en la Ciencia? Esto quiere decir que ninguna persona, en ninguna parte, demostró la capacidad o el interés necesario para proseguir insistiendo en las obras de Arquímedes, Euclides o Apolonio.

Lo cierto es que da mucha pena comprobar como el paso del tiempo hace desaparecer aquellas culturas
Las primeras observaciones sobre fenómenos eléctricos se realizaron ya en la antigua Grecia, cuando el filósofo Tales de Mileto (640-546 a.C.) comprobó que, al frotar barras de ámbar contra pieles curtidas, se producía en ellas características de atracción que antes no poseían. Es el mismo experimento que ahora
se puede hacer frotando una barra de plástico con un paño; acercándola luego a pequeños pedazos de papel, los atrae hacia sí, como es característico en los cuerpos electrizados.
Sin embargo, fue el filósofo griego Theophrastus (374-287 a.C.) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este
mismo poder, dejando así constancia del primer estudio científico sobre la electricidad. Comprobando que no todos los materiales pueden adquirir tal propiedad o adquirirla en igual medida. Se atraen, por ejemplo, una barra de vidrio y otra de ebonita. Se repelen, sin embargo, dos barras de vidrio o dos de ebonita.
Gradas y restos del edificio de la escena del teatro de Mileto. Mileto (en cario: Anactoria; en hitita: Milawata o Millawanda; en griego antiguo Μίλητος Mílêtos; en turco: Milet) fue una antigua ciudad griega de la costa occidental de Anatolia (en la actual provincia de Aydın de Turquía), cerca de la desembocadura del río Meandro en la antigua Caria. El emplazamiento estuvo habitado desde la Edad del Bronce.


Aquellos ”científicos” se reunieron en Mileto. Tales, Anaximandro y Anaxímenes hicieron observaciones astronómicas con el gnomon, diseñaron cartas náuticas, plantearon hipótesis más o menos relacionadas con los hechos observados referidas a la estructura de la Tierra, la naturaleza de los planetas y las estrellas, las leyes seguidas por los astros en sus movimientos. En Mileto, la ciencia, entendida como
interpretación racional de las observaciones, aparece que dio los primeros pasos

Se planteaban preguntas y trataban de contestarlas
Claro que, las cosas nunca suelen ser tan sencillas. La hipótesis según la cual la ciencia surgió por generación espontánea en suelo griego y desaparecido después hasta el Renacimiento parece ridícula cuando se expresa de forma
sucinta, sin más explicaciones. Es una idea que se formuló por primera vez en Alemania hace unos 150 años y que, poco a poco, ha ido calando, sutilmente en nuestras consciencias a través de la educación que, la única concesión que se hace a las culturas no europeas es la que se refiere al Islam. Esta teoría dice que los árabes conservaron viva la cultura griega, incluida la ciencia, durante toda la Edad Media. Ejercieron de escribas, traductores y guardianes, sin pensar, aparentemente, en crear su propia ciencia.

Estatua de Averroes en Córdoba
Al Sur de la puerta de Almodóvar de Córdoba, se levanta la estatua de Averroes. Jurista, médico, filósofo. El gran Averroes fue la máxima autoridad judicial de la época,(siglo XII). Fue acusado por los fundamentalistas de poner la razón humana por encima de la ley divina. La mirada del viejo filósofo se pierde entre
las callejas mientras escucha el murmullo del agua del estanque junto al que reposa.
Nada de eso es cierto. De hecho, los eruditos islámicos admiraron y preservaron las matemáticas y la ciencia griega y actuaron como el hilo conductor de la ciencia de muchas culturas no occidentales, además de construir un edifcio propio impresionante en el campo de las ciencias. Lo cierto es que, la ciencia occidental es lo que es porque se construyó acertadamente sobre las mejores ideas de los distintos pueblos, los mejores datos
e incluso, los mejores aparatos procedentes de otras culturas. Por ejemplo, los babilonios desarrollaron el teorema de Pitágoras (la suma de los cuadrados de los dos lados perpendiculares de un triángulo rectángulo es igual al cuadrado de la hipotenusa) al menos mil quinientos años antes de que Pitágoras naciera.



En el año 200 d. C., el matemático chino Liu Hui calculó para el número
π un valor (3,1416) que se mantuvo como la estimación más precisa de dicho número durante unos mil años. Nuestras cifras del 0 al 9, se inventaron en la antigua India, siendo las cifras de Gwalior del año 500 d. C. casi indistinguibles de las cifras occidentales modernas. Álgebra es una palabra árabe que significa “obligación”, como cuando se obliga a que la incógnita x tome un valor numérico.
Arabia es una región de Oriente Medio del desierto comprendido entre el mar Rojo y el océano Índico. Desde
el punto de vista histórico, esta región era conocida también como la cuna de una de las principales religiones del mundo, el Islam. Nacida en el siglo VII, esta religión había establecido importantes cambios en la configuración de mandato, los derechos económicos y principios culturales del mundo árabe. Sin embargo, pocos saben de su cultura y de la importante contribución que hicieron a la Ciencia (Astronomía, Medicina, Matemáticas…)

China, Babilonia y también el Islam. El Califa árabe al-Mamun hizo construir la ciudad de la Sabiduría y un Observatorio para que los astrónomos pudieron observar las variantes de los parámetros astronómicos (obtenidos de los griegos) y las estrellas del cielo. Aportaron así la mayor contribución y uno de los valores más exactos de de la precesión de los equinoccios, la inclinación de la eclíptica y otros datos
de este tipo. En el año 829 sus cuadrantes y sextantes eran mayores que los que construyó Tycho Brahe en Europa más de siete siglos después.
Como antes decía, en el siglo IX, el gran mecenas de la ciencia el califa abasí al-Mamun, reunió a varios astrónomos en Bagdad para
crear la casa de la Sabiduría (Bait al-Hikmah). Allí los astrónomos llevaron a cabo observaciones del Sol y de la Luna, con el fin de determina la latitud y la longitud locales para fijar la gibla. Recopilaron algunos de los mejores resultados de un zij titulado “Lo Comprobado” (al-Mumtahan).
Al-Biruni desarrolló técnicas para medir la Tierra y las distancias sobre ella utilizando la triangulación. Descubrió que el radio de la Tierra era 6.339,6 Kilómetros, un valor que no se obtuvo en Occidente hasta el siglo XVI. Uno de sus zijs contiene una tabla que da las coordenadas de seiscientos lugares, casi todos conocidos por él directamente.
En el año 499, Aryabhata escribió un pequeño volumen, Aryabhatuya, de 123 versos métricos, que se ocupaban de astronomía y (una tercera parte) de ganitapada o matemáticas. En la segunda mitad de esta obra, en la que habla del tiempo y la trigonometría esférica, Aryabhata utiliza una frase, en la que se refiere a los números empleados en el cálculo, “cada
lugar es diez veces el lugar precedente”. El valor posicional había sido un componente esencial de la numeración babilónica, pero los babilonios no empleaban un sistema decimal.

La fuerza de gravedad mantiene unidas las estrellas, estas a las galaxias, las galaxias entre
sí, y, los mundos a las estrellas que orbitan, mientras nosotros, nos sentidos atraídos por la gravedad que genera el mundo que habitamos que mantiene nuestros pies unidos a la superficie impidiendo que flotemos sin control. (Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe imágenes como
la de arriba).
Veinticinco siglos antes de Isaac Newton, el Rig-Veda hindú afirmaba que la gravitación hace que el universo se mantenga unido, aunque esta
hipótesis era mucho menos rigurosa que la de Newton, en esencia, quería decir lo mismo que él dijo.

![Lea sobre el registro fósil | Ciencias para 6° a 8° grado [imprimible]](https://www.generationgenius.com/wp-content/uploads/2020/07/338-still-1-1024x576.jpg)
Los arios de lengua sánscrita suscribieron la idea de que la Tierra era redonda en una época en que los griegos creían que era plana. Los hindúes del siglo V d. C. calcularon de algún modo la edad de la Tierra, cifrándola en 4.300 millones de años; los científicos ingleses del siglo XIX estaban convencidos de que la Tierra tenía 100 millones de años. Algunos expertos chinos del siglo IV d. C. -como los árabes del s. XIII y los papúes de Nueva Guinea posteriormente- adoptaron la rutina de utilizar fósiles para
estudiar la historia del planeta, sin embargo, en el siglo XVII algunos miembros de la Universidad de Oxford seguían enseñando que los fósiles eran “pistas falsas sembradas por el diablo” para engañar a los hombres.
¡Que cosas!
Con todo esto, os quiero decir amigos míos que, cuando oímos hablar de la primacía europea con respecto a las Ciencias…, debemos dejar el comentario en cuarentena y, dedicar un tiempo a profundizar más en cómo fueron las cosas en la realidad. No siempre las cosas son como
parecen, o, como nos las quieren presentar.
Mucho antes de que llegaran los científicos modernos, en tiempos del pasado muy lejano, otras culturas de filósofos naturales ya hablaban del átomo y del vacío. Ellos supieron intuir que había una materia cósmica y que todo lo grande estaba hecho de pequeñas cosas. Los pensadores de aquellos lugares eran anacoretas encerrados en un misticismo que los unía a la Naturaleza y a ese otro mundo de los pensamientos que están situados más allá de lo material. Ellos ya se preguntaban por…:
¡Tantas cosas!
Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Higgs se descubrió hace ya muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna fecha
situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está relacionada con la luz cósmica.
El Rig-Veda, que data de alguna fecha situada el año 2000 y 1500 a. C., es el primer texto hundú en el cual se exponen unas ideas que pueden considerarse …
Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando unidades más intensamente reales que espirituales hasta
llegar al Brahmán único de los Upanishads.
la época de Buda (500 a, C.), los Upanishad, escritos durante
un período de varios siglos, mencionaban el concepto de svabhava, definido “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir hacia
abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

Tambiénm aquellos pensadores, manejaron el concepto de yadrccha, o azar desde
tiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.
Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.
Mirar al pasado nos enseña de donde venimos y quiénes somos.
Emilio Silvera V.
Oct
22
¡Siempre persiguiendo sueños!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

El puente entre mecánica cuántica y relatividad general aún es posible. Un equipo internacional de investigadores han desarrollado un marco unificado que explicaría este aparente desglose entre la física clásica y la física cuántica, y lo pusieron a prueba utilizando un satélite cuántico llamado Micius.
Leer más: https://www.europapress.es/ciencia/laboratorio/noticia-puente-mecanica-cuantica-relatividad-general-aun-posible-20190920102718.html
Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre, según la teoría de la relatividad de Einstein.
La mecánica cuántica y la teoría general de la relatividad forman la base de la comprensión actual de la física, aunque las dos teorías no parecen funcionar juntas. Se han construido toda clase de artilugios de última tecnología para tratar de medir ambas teorías unificándolas, sin que hasta la fecha, el resultado sea positivo.
“La gravedad cuántica es el campo de la física teórica que procura unificar la teoría cuántica de campos, que describe tres de las fuerzas fundamentales de la naturaleza, con la relatividad general, la teoría de la cuarta fuerza fundamental: la gravedad. La meta es lograr establecer una base matemática unificada que describa el comportamiento de todas las fuerzas de la Naturaleza, conocida como la teoría del campo unificado.”

Súper-Gravedad en dimensión 11

“En la física de partículas, la supersimetría es una simetría hipotética que podría relacionar las propiedades de los bosones y los fermiones. La supersimetría también es conocida por el acrónimo inglés SUSY. En una teoría super-simétrica cada partícula bosónica tendría un “compañera super-simétrico” de tipo fermiónico y viceversa.”
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas”, “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
Representación de la variedad de Calabi-Yau uno de los candidatos para representar las dimensiones compactificadas asociadas a la teoría M, diferente de las cuatro dimensiones observables (no-compactificadas) del espacio-tiempo.

“La teoría M es una teoría física, propuesta como una “teoría del todo” que unifique las cuatro fuerzas fundamentales de la naturaleza. La teoría M fue esbozada inicialmente por Edward Witten, su propuesta combinaba las cinco teorías de supercuerdas y supergravedad en once dimensiones.”
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo. Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para verlas?
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
Pendiendo de unas cuerdas
Lo cierto es que para llegar a las cuerdas que según dicen está más allá de los Quarks, se necesitaría una energía de Planck, es decir de 1019 GeV. Esa energ´ñia no está a nuestro alcance.
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que, si acaso, por medio de SUSY, nos podrá enseñar la simetría unificadora si es capaz de encontrar alguna de esas partículas exóticas como los squarks y los fotinos. Algunos hablan del Neutralino como componente de la hipotética “materia oscura”.
Oct
21
Leyendo huellas del pasado…. ¡Será verdad lo que cuentan?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Leyendas que han llegado hasta nosotros, historias escritas en tablillas de arcilla sumeria
Como la historia de la vida (en relación a la Humanidad), no la conoce nadie, nos hacemos eco de leyendas que corren por ahí y que vienen de mitologías o sucesos de aquella Civilización Sumeria que construyeron las primeras ciudades, inventaron la rueda, domesticaron animales, comenzaron la agricultura….
¿No resulta raro que aquel pueblo avanzara tanto en aquellos tiempos?
Bueno, aquí nos cuentan una historia que es una conjetura de lo que pudo pasar, y, la imaginación desbocada nos llevan de la mano de hechos… ¿Fantásticos? Claro que en todas las historias subyace algo de verdad que, a medida que pasaba de una generación a otra, era objeto de adornos y retoques.
Que cada cual determine lo que quiere creer sobre lo que aquí nos cuentan.
Emilio Silvera V.
Oct
21
La búsqueda de lo desconocido
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
¿Cómo pueden unos simples imanes formar una imagen tan bella? La respuesta se encuentra en una de las interacciones fundamentales que hacen de nuestro universo lo que es.
“Click. Con un leve toque, las piezas de colores comienzan a saltar y bailar. Como si tuvieran vida propia, en apenas unos segundos, todas los pequeños círculos se unen uno tras otro, ordenándose bajo una fuerza misteriosa. O no tanto, porque es obvio que la fuerza no es otra que la atracción magnética. Estos curiosos imanes fueron lanzados en una campaña de crowdfunding bastante exitosa, como un juego. Pero las posibilidades que parecen ofrecer unos sencillos imanes van mucho más allá. ¿Qué hace que unos pedazos de metal ferromagnético recubierto de plástico se conviertan en algo tan bello?”
Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.

La ralentización del tiempo cerca de un agujero negro se debe a su intensa gravedad, que deforma el espacio-tiempo, un concepto descrito por la teoría de la relatividad general. Esta deformación implica que el tiempo transcurre más lentamente cuanto más cerca se está del agujero negro, un fenómeno conocido como dilatación gravitacional del tiempo.
Claro que me llama poderosamente la atención que esa intensa Gravedad actúe sobre el Tiempo que no es material, y, lo mismo me pasa, cuando leo que la luz (hecha de fotones sin masa), tampoco puede escapar a la fuerza de Gravedad que genera el Agujero negro. Esta fuerza decrece con la distancia, cuanto más lejos estemos del objeto que la genera, menos la sentiremos.
Por el contrario, la interacción fuerte disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras. Así, los Quarks confinados dentro de los nucleones (protones y neutrones), cuando tratan de separarse son retenidos por la fuerza nuclear fuerte que se vale de emisarios de la familia de los Bosones que se llaman Gluones.
El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.
“Ha sido un gran alivio. He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek, uno de los premiados. ä libertad asintótica de los Qurks es en el límite de distancias pequeñas entre quarks o, equivalentemente, de altas energías, que los quarks interactúan débilmente entre sí. La interacción fuerte puede estudiarse aproximada-mente en el límite de altas energías.
“Frank Wilczek es Premio Nobel de Física 2004 por sus contribuciones a la cromodinámica cuántica (QCD), la teoría de la interacción fuerte, junto a David Gross y a David Politzer. En 1973, Wilczek, estudiante de doctorado, y Gross, su director de tesis en la Universidad de Princeton, descubrieron la libertad asintótica que afirma que mientras más próximos estén los quarks menor es la interacción fuerte entre ellos; cuando los quarks están muy próximos entre sí se comportan como partículas libres lo que permitió confirmar su existencia en los experimentos. Politzer descubrió la libertad asintótica de forma independiente.” Fuente: Ciencia de la Mula francis
“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”
Politzer Wilczek David J. Gross
Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters. Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromodinámica Cuántica (QCD).
Siguiendo una arraigada costumbre de la Física de partículas, los investigadores emplearon nombres comunes y desenfadados para señalar sus nuevos descubrimientos y llamaron “colores” a las intrincadas propiedades de los quarks.
Los Quarks confinados dentro de los nucleones (protones y neutrones) sujetos por los Gluones
Por ello, su teoría es conocida en la actualidad por el nombre de Cromo-dinámica (cromo significa “color” en griego), a pesar de que no tienen nada que ver con lo que entendemos y llamamos color en nuestra vida cotidiana, sino con el modo en que los componentes del núcleo atómico permanecen unidos. En este sentido, resulta mucho más intuitiva, aunque no menos divertida, la denominación de las partículas que hacen posible la interacción fuerte, llamadas gluones (glue es “pegamento” en inglés).
Al igual que en la teoría electromagnética, las partículas pueden tener carga positiva o negativa, los componentes más diminutos del núcleo atómico pueden ser rojos, verdes o azules.
Además, de manera análoga a como las cargas opuestas se atraen en el mundo de la electricidad y el magnetismo, también los quarks de distinto color se agrupan en tripletes para formar protones y neutrones del núcleo atómico.
Pero estas no son las únicas similitudes, ni siquiera las más profundas, que existen entre las distintas fuerzas que rigen el Universo. De hecho, los científicos esperan que, en última instancia, todas las interacciones conocidas sean en realidad la manifestación variada de una sola fuerza que rige y gobierna todo el cosmos.
Según la Academia Sueca, el trabajo premiado a estos tres Físicos, “constituye un paso importante dentro del esfuerzo para alcanzar la descripción unificada de todas las fuerzas de la Naturaleza”. Lo que llamamos teoría del todo.
Según Frank Wiczek, que ahora pertenece al Instituto Tecnológico de Massachussets (MIT), su descubrimiento “reivindica la idea de que es posible comprender a la Naturaleza racionalmente”. El físico también recordó que “fue una labor arraigada en el trabajo experimental, más que en la intuición”, y agradeció “a Estados Unidos por un sistema de enseñanza pública que tantos beneficios me ha dado”.
Sabemos que los quarks (hasta el momento) son las partículas más elementales del núcleo atómico donde forman protones y neutrones. La interacción fuerte entre los quarks que forman el protón es tan intensa que los mantiene permanentemente confinados en su interior, en una región ínfima. Y, allí, la fuerza crece con la distancia, si los quarks tratan de separarse, la fuerza aumenta (confinamiento de los quarks), si los quarks están juntos los unos a los otros, la fuerza decrece (libertad asintótica de los quarks). Nadie ha sido capaz de arrancar un Quark libre fuera del protón.
Con aceleradores de partículas a muy altas energías, es posible investigar el comportamiento de los quarks a distancias muchos más pequeñas que el tamaño del protón.
Así, el trabajo acreedor al Nobel demostró que la fuerza nuclear fuerte actúa como un muelle de acero, si lo estiramos (los quarks se separan), la fuerza aumenta, si lo dejamos en reposo, en su estado natural, los anillos juntos (los quarks unidos), la fuerza es pequeña.
Así que la Cromo-dinámica Cuántica (QCD) describe rigurosamente la interacción fuerte entre los quarks y, en el desarrollo de esta teoría, como se ha dicho, jugaron un papel fundamental los tres ganadores del Nobel de Física de 2004 cuyas fotos y nombres hemos puesto antes.
Trabajos y estudios realizados en el acelerador LEP del CER durante la década de los 90 han hecho posible medir con mucha precisión la intensidad de la interacción fuerte en las desintegraciones de las partículas z y t, es decir a energías de 91 y 1,8 Gev, los resultados obtenidos están en perfecto acuerdo con las predicciones de ACD, proporcionando una verificación muy significativa de libertad asintótica.
Mini Big Bang a 100 metros bajo tierra
Habiendo mencionado el CER (Centro Europeo de Investigación Nuclear.), me parece muy oportuno recordar aquí que está a punto de finalizar la construcción del LHC (el Gran Colisionador de Hadrones, el acelerador de partículas más grande del mundo ).
Simular el nacimiento del Universo no resulta nada sencillo. Primero hay que excavar un túnel subterráneo de 100 m. de profundidad, en cuyo interior se debe construir un anillo metálico de 27 kilómetros enfriado por imanes superconductores cuya función es mantener una temperatura bastante fresca, nada menos que 271 grados bajo cero.
Los haces de partículas lanzadas a la velocidad de la luz que chocan en un punto determinado y se rompen en mil pedazos para desentrañar los misterios que esconde la materia.
A continuación, hay que añadir a la ecuación dos puñados de protones, lanzados al vacío de este tubo subterráneo en direcciones opuestas, y a una velocidad inimaginable que prácticamente debe rozar la velocidad de c. la velocidad de la luz en el vacío. Es solo entonces cuando los múltiples colisiones de partículas que se produzcan en el interior del anillo producirán condiciones que existían inmediatamente después del Big Bang, ese descomunal estallido cósmico que dio el pistoletazo de salida para el surgimiento de nuestro mundo y de la vida inteligente a partir de esta materia inerte creada y evolucionada después en las estrellas.
Frontera Francia – Suiza A 100 m bajo tierra la inmensa máquina LHC
En el corazón de la cordillera del Jura, justo en la frontera entre Francia y Suiza, el Centro Europeo de Investigaciones Nucleares (CERN), está ultimando la construcción de esta maravilla que, cuando se finalice de instalar todos los componentes de esta faraónica obra científica (cuyo coste está ya en 40.000 millones de euros y se ha tardado 15 años en construirse), unos 10.000 investigadores de 500 instituciones académicas y empresas esperan descubrir nuevas claves sobre la naturaleza de la materia y los ladrillos fundamentales de las que se compone el Universo.
Por aquel entonces decíamos:
¿Podremos encontrar por fin, en 2.008, cuando funcione este Gran Acelerador de Hadrones, esa esperada y soñada partícula, a la que algunos han llegado a llamar La “Partícula Divina”, conocida por partícula de Higgs y que se tiene por la partícula que proporciona las masas a todas las demás?
Este acelerador tan largamente esperado, comenzó a funcionar en 2.008 y, las partículas que se inyecten en su interior colisionaran aproximadamente seiscientos millones de veces por segundo, desencadenando la mayor cantidad de energía jamás observada en las condiciones de un laboratorio, aunque aun estará muy alejada de la energía necesaria para comprobar la existencia de las cuerdas vibrantes. Pero eso sí, nos dejará ver otras partículas nuevas hasta ahora esquivas, pertenecientes al grupo más elemental de los componentes de la materia.
El LHC producirá tantos datos que necesitarán una pila de CD de 20 km. de altura para almacenar tanta información generada por los experimentos y, una legión de físicos para estudiar resultados. Será fascinante.
En la gran máquina colisiones que imitan un Big Bang en miniatura
El trabajo que se lleva a cabo en el CERN constituye una contribución muy importante al conocimiento de la Humanidad para comprender el mundo que nos rodea.
La pregunta clave: ¿De qué se compone la materia de nuestro Universo? Y ¿Cómo llegó a convertirse en lo que es?
Es increíble el logro de conocimiento y tecnología que el hombre tiene conquistado a principios del siglo XXI, este mismo artilugio al que llaman acelerador LHC, es la mejor prueba de ello: Por ejemplo, los sistemas criogénicos que deben mantener ese inimaginable frío de 271 grados bajo cero o los campos electromagnéticos que deben asegurar que la aceleración de los haces de partículas las recorran los 27 km del anillo subterráneo a un 99,99% de la velocidad de la luz.
Si todo sale como está previsto y se cumplen todas las expectativas de los científicos, se calcula que cada segundo, un protón dará 11.245 vueltas al anillo del LHC. Teniendo en cuenta que cada haz de estas partículas tendrá una duración de 10 horas, se estima que recorrerá un total de 10.000 millones de kilómetros (suficiente para llegar a Neptuno y volver).
La energía requerida por el haz de protones al viajar por el acelerador es el equivalente a un coche viajando a 1 .600 km/h por el carril rápido de una autopista imposible, o la cantidad de energía almacenada en los imanes superconductores que mantendrán la temperatura a-271° sería suficiente para derretir 50 toneladas de cobre.
El LHC está dividido en 8 sectores de 3,3 km cada uno, y, de momento, sólo se ha logrado el enfriamiento de uno de los sectores a la temperatura necesaria para llevar a cabo las colisiones que simularán, en miniatura, las condiciones del Big Bang.
El Bosón de Higgs, el tesoro más buscado, será el premio. Una partícula que predice el modelo teórico actual de la Física, pero para el que hasta ahora no existe evidencia alguna. Se supone que este “ladrillo” fundamental del cosmos (cuyo nombre proviene del físico escocés que propuso su existencia en 1.964, Peter Higgs) es crucial para comprender cómo la materia adquiere su masa.
John Ellis, uno de los investigadores del CERN, decía:
“Si no encontramos la partícula de Higgs, esto supondría que todos los que nos dedicamos a la Física teórica llevamos 35 años diciendo tonterías”.
Espero que no sea así y que la dichosa partícula aparezca. Herman Tey Kate, otro físico del CERN, se atrevió a predecir que, la partícula de Higgs aparecería antes de ocho meses a partir del comienzo de la búsqueda en los primeros meses de 2.010.
Al final (parece) que se salieron con la suya.
Creo que me he extendido demasiado en el ejemplo, cuando me introduzco en temas de Física se me va el santo al cielo, pero estamos tratando sobre nosotros y la manera en que evolucionamos para adquirir los conocimientos y sensaciones que tenemos.
En lo que a la materia “oscura” se refiere ¿No estarán gastando recursos y tiempo en algo que nunca encontrarán?
Emilio Silvera V.
Oct
21
Naturaleza, Simetría, Belleza.
por Emilio Silvera ~
Clasificado en Naturaleza ~
Comments (41)
Siempre han llamado nuestra atención esas figuras perfectas, armoniosas y simétricas que, aparecen en la Naturaleza, ante nuestros ojos, y, a pesar de que algunas tienen conformaciones complejas, se repiten con una perfección que causa en nosotros un cierto asombro no exento de curiosidad. Tanto en el “universo” del microcosmos como en el del macrocosmos, existen estructuras regulares y armoniosas en espiral, esféricas o con forma de hélice que nuestra innata curiosidad nos ha llevado a investigar para llegar a saber que obedecen a precisas reglas matemáticas y biológicas en algunos casos.

![]()
Simetrías por todas partes
Los cuernos de una cabra, la imagen de un ciclón visto desde el espacio, una galaxia o una concha, la chica que arriba nos mira. Son formas que se nos viene a la vista, aspectos de la realidad que llaman poderosamente nuestra atención y nos lleva a preguntar:
¿Por qué se forman y repiten esas figuras una y otra vez, y, en cada caso, una es la “copia exacta” de todas las demás de su género? ¿Es posible que el hombre, al contemplar tales maravillas comenzara a hacer preguntas y diera lugar al nacimiento de la Ciencia? Las matemáticas comenzaron por el asombro que despertaban las formas geométricas y de la misma manera, nacieron los primeros problemas de la física clásica centrada en las órbitas de los astros y las trayectorias de proyectiles.
















Totales: 81.877.116
Conectados: 50































