Oct
29
¡Cuántas maravillas! Y, nuestra Mente, entre ellas
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania),
“Debemos saber. Sabremos”.

Hilbert nos hacía su planteamiento que era obtener la respuesta a tres importantes preguntas:
- ¿Son las matemáticas completas, es decir cualquier proposición puede ser probada o rechazada?
- ¿Son las matemáticas consistentes, es decir no es posible demostrar algo falso?
- ¿ Las matemáticas deciden, es decir cualquier proposición se puede demostrar como cierta o falsa tras una secuencia finita de pasos?”

La importancia de la Simetría en la Naturaleza.
No sería descabellado decir que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría deca-dimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.
Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física. De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.
![]()
Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann (1). Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.
(1)”El tensor métrico de Riemann es un objeto matemático fundamental en la geometría diferencial y la relatividad que define las distancias, ángulos y volúmenes en espacios curvos. En geometría de Riemann, es un tensor de rango 2 que permite extender los conceptos de la geometría euclidiana a espacios curvos. A diferencia del tensor de curvatura de Riemann (que describe la curvatura en sí), el tensor métrico es el que proporciona la estructura geométrica base. “

Geometría → teoría de campos → teoría clásica → teoría cuántica.
Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.
La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

Función beta. Representación de la función valores reales positivos de x e y.
Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de , prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.
Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

Gabriele Veneziano es un físico italiano
Mahiko Suzuki
En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, como la teoría de cuerdas fue descubierta atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.
Así, Witten dice:
“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”
Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.

Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.
El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

¿Por qué diez dimensiones?
Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.
Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos explicar por qué se discriminan las diez dimensiones. La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.
Al manipular los diagramas de lazos1 de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.
Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de , es imposible verificarla.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. extraña función contiene un término elevado a la potencia veinticuatro.
La constante de Ramanujan esconde una realidad
El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende. Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas. En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell. Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones. Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

“En matemática, la función theta de Ramanujan generaliza la forma de las funciones theta de Jacobi, a la vez que conserva sus propiedades generales. En particular, el producto triple de Jacobi se puede escribir elegantemente en términos de la función theta de Ramanujan. La función toma nombre de Srinivasa Ramanujan, y fue su última gran contribución a las matemáticas.”

Como un revoltijo de hilos entrecruzados que son difíciles de seguir, así son las matemáticas de la teoría de cuerdas
Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.
En el análisis final, el origen de la teoría deca-dimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente auto-consistente), pero no sabemos por qué se seleccionan estos números concretos.
Godfrey Harold Hardy
G. H. Hardy, el mentor de Ramanujan, trató de estimar la capacidad matemática que poseía Ramanujan. Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80. A Ramanujan le asignó una puntuación de 100. Así mismo, Hardy se concedió un 25.
Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia. Hardy señaló:
“Parecía ridículo importunarle sobre como había descubierto o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.
Ramanujan
Hardy recordaba vivamente:
-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney. Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”
– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable una suma de dos cubos en dos formas diferentes.
(Es la suma de 1 x 1 x 1 y 12 x 12 x 12, y la suma de 9 x 9 x 9 y 10 x 10 x 10).
Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.
En 1.919 volvió a casa, en la India, donde un año más tarde murió enfermo.
El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración. En 1.976, sin embargo, se hizo un nuevo descubrimiento. Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage. Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

Comentando cuaderno perdido, el matemático Richard Askey dice:
“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”. Lo que él consiguió era increíble. Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.
Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna, la única capaz de unir la mecánica quántica y la Gravedad.
La fórmula más famosa de Ramanujan para calcular pi (π) es una serie infinita que converge a la inversa de pi con una velocidad asombrosa, aportando aproximadamente 8 decimales con cada término adicional. Una de sus fórmulas más conocidas es:
La fórmula fue descubierta por el matemático indio Srinivasa Ramanujan, quien formuló docenas de series para aproximar el valor de pi.

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie. Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro. Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.
Como saben los físicos, los “accidentes” no aparecen sin ninguna razón. Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente. Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego. Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

Nuestro mundo asimétrico hermosas simetrias
Aquí es precisamente donde entra el trabajo de Ramanujan. Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan. ¡Increíble! Pero, cierto.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil. Cualquier teoría, afirman, debe ser verificable. Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!
El principal problema, es teórico más que experimental. Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría. Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

Volviendo a Ramanujan…
Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado como pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es la que aparece más arriba en el lugar número 21 de las imágenes expuestas y utilizada para realizar aproximaciones del Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un número entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.
Publica: Emilio Silvera V.
”Algunas personas buscan un significado a la vida a través del beneficio, a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.
Oct
29
Seguimos insistiendo en la existencia de la “Materia Oscura”
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
Pero aquí, de lo que se trata es de saber si, verdaderamente, existe esa masa perdida, dónde puede estar, y, ¿por qué estamos obsesionados con la existencia de la energía y la materia oscura? Si nadie puede dar una razón cierta de ellas, y, sin embargo R que R. Claro que, esa “materia oscura les cuadra las cuentas, así, se evitan de tener que explicar de manera engorrosa para ellos…. ¡Qué no saben!
¿Qué es lo que no saben? pues no saben explicar el por qué las galaxias se mueven a mayor velocidad de lo que deberían hacerlo teniendo en cuenta la materia que podemos observar en el Universo. Y, cuando a un “listillo” se le ocurrió la existencia de la “materia oscura”, todos se agarraron a ella como el que se ahoga al clavo ardiendo.
Martinus J. G. Veltman, el Premio Nobel de Física de Holanda, decía:
“La materia oscura es la alfombra bajo la cual barren su ignorancia los cosmólogos”.
Creo que no le faltaba razón, ya que, hasta el momento, nadie ha podido decirnos de qué está hecha, por qué es transparente, como es posible que no genere radiación y, sin embargo sí genere Gravedad….
¡Qué locura”!
Cuando hablan de “ella”, lo hacen como si estuviera ahí y la pudiéramos tocar, cuando lo cierto es que deberían decir: “Si la “materia oscura” existiera… ¡Quedaría explicado el movimiento anímalo de las galaxias!
![]()
La “materia oscura”, según nos dicen, permea todo el Espacio y en ella están sumergidas las galaxias
Seguimos leyendo por ahí cosas como estas:
“La existencia de la materia oscura quedó confirmada a partir de 1974, aunque hasta 1980 aún se la llamaba “masa perdida” (“missing mass”) o “masa no visible” (“unseen mass”). Fritz Zwicky usó por primera vez el término “materia oscura” (“dunkle Materie” en alemán) en 1933, pero las estimaciones de la masa del disco galáctico de la Vía Láctea por James Jeans (1922) y Jacobus Kapteyn (1922) ya habían indicado la presencia de “estrellas oscuras” (tres estrellas tan poco luminosas que no se veían por cada una que era visible), algo que Jan Hendrik Oort confirmó en 1932. Nos cuenta la historia de la materia oscura galáctica Virginia Trimble (Departamento de Física y Astronomía, Universidad de California) en “The discovery of dark matter,” DV2010 – Darkness Visible, IoA Cambridge, August 2-6 2010.”

Existen hipótesis alternativas que nos dicen que la “materia oscura” no existe, y que los efectos observados en el movimiento anómalo de las galaxias se explican por la Gravedad modificada (como la Teoría MOND) u por fenómenos cósmicos en evolución, como el debilitamiento de las fuerzas fundamentales del Universo a medida que envejece.

Estas teorías buscan explicar fenómenos como la rotación de galaxias y la expansión acelerada del universo sin recurrir a la materia y energía oscuras, aunque los modelos alternativos aún enfrentan desafíos para explicar todas las observaciones.
Leyendo estos comentarios, de una cosa estamos seguros… ¡No saben nada en relación al movimiento de las galaxias que no se ajusta a la cantidad de masa que contiene el universo, es decir, la Densidad Crítica. Y, para tapar dicha ignorancia… ¡Se agarran a la “materia oscura” como el que se ahoga al hierro candente.
Claro que si lo de la “materia oscura” al final no sale bien y se confirma que no existió nunca… No por ello podemos despreciar los logros alcanzados, salir ilesos de muchas derrotas es nuestro destino, no siempre se puede acertar. La Clave está en saber levantarse y seguir luchando en la búsqueda de esa verdad que, incansables, perseguimos.
Emilio Silvera V.
Oct
28
Preguntamos pero, ¿sabemos responder?
por Emilio Silvera ~
Clasificado en Bioquímica ~
Comments (5)
¿Qué es la vida?
Así, con esa pregunta que no podemos contestar (solo emitir conjeturas), finaliza también la segunda parte de este trabajo
Moléculas esenciales para la vida en las Nebulosas
¿Cómo podríamos ensamblar una explicación científica de la génesis de la vida? A simple vista nos puede parecer una tarea sin esperanzas. No creo que buscar fósiles en las rocas más antiguas sea suficiente y nos ofrezca todas las claves necesarias. La mayoría de las delicadas moléculas prebióticas que dieron lugar a la vida habrán sido erradicadas por el inexorable paso del tiempo y la destructora entropía que todo en polvo lo convierte. Es posible, que podamos esperar el hallazgo de algún residuo químico ya degradado de aquellos organismos ancestrales a partir de los cuales evolucionó la vida celular que conocemos.
Claro que, aparte de los fósiles que podamos encontrar en las rocas, existe otra línea de evidencia que, de la misma manera, se remonta al pasado lejano y oscuro, pero que existe aquí y ahora, dentro de las formas de la vida presente. Los biólogos están convencidos de que ciertas reliquias de organismos antiguos siguen viviendo en las estructuras y procesos bioquímicos de sus descendientes, incluyéndonos a nosotros, los seres humanos.


Estudiando cómo funciona la célula moderna podemos tener una visión de los remanentes de la vida ancestral en acción –una molécula peculiar aquí, una reacción química singular allí, de la misma forma que unas monedas fuera de lugar, unas herramientas rústicas del pasado lejano o, cómo los montículos sospechosos que alertan al experimentado arqueólogo. Así, entre los intrincados procesos que tienen lugar dentro de los organismos modernos, sobreviven trazas de vida primordial que establecen un puente con nuestro pasado lejano. Analizando estas oscuras trazas, los científicos han comenzado a reconstruir los caminos físicos y biológicos que pueden haber llevado a la existencia de la primera célula viva.
De todas las maneras, incluso con tales claves bioquímicas, la tarea de reconstrucción seguiría siendo básicamente una conjetura si no fuera por el relativamente reciente descubrimiento de ciertos “fósiles vivientes”: microbios que habitan en ambientes extraños y extremos.

Estos denominados super-microbios, han sido y continúan siendo intensamente investigados y según parece, van revolucionar la microbiología. Pudiera ser que estemos atisbando en estos microbios poco convencionales algo próximo a los primitivos organismos que generaron toda la vida en la Tierra. Claves adicionales pudieran venir de la búsqueda de la vida en Marte y otros planetas, y del estudio de cometas y meteoritos. Reconstruyendo todas estas líneas de evidencia, quizá seamos capaces de deducir, al menos en líneas generales, de qué manera emergió la primera vida en el universo.
Muestras de diversos tipos de microorganismos extremófilos
Claro que, convendría saber, antes de abordar el problema de su origen, lo que la vida es. Hace menos de un siglo que muchos científicos estaban convencidos de que ese problema estaba a punto de ser resuelto. Los avances en la estructura de la materia a nivel atómico, y los avances en el saber de los componentes moleculares de la célula, elevó de manera excesiva la ilusión de los expertos que, con el paso del tiempo, no se plasmó en realidad, y, la vida, sigue siendo un gran misterio sin resolver.

Cuando vemos todos los parámetros que han tenido que concluir para que la vida esté presente… Nos da la sensación de que, el Universo, ¡Sabía que la vida tenía que venir! ¿Si no cómo sería contempladas tantas maravillas?
Los caminos recorridos por la Naturaleza para llegar hasta la Vida… No siempre han sido comprendido y, no pocos de esos pasos necesarios hasta llegar a nosotros, los seres inteligentes del planeta, quedan ocultos por las brumas del Tiempo
Una cosa está clara para mí, es posible que la materia, en sus distintas fases y por separado, nos pueda parecer que es algo inerte, pasivo, y hasta “torpe” que sólo suele responder cuando es requerida por fuerzas externas y, sin embargo, en ciertas circunstancias especiales, la materia parece tener una especie de “chispa interior” un algo que, a veces, se nos asemeja a una especie de “vida propia”. Todos conocemos de las transformaciones que, en ciertas condiciones y lugares, pueden producirse en la materia “inerte” que se transmuta en otra cosa muy distinta de lo que en principio era y, dicho cambio, si no es una especie de “extraña vida” ¿qué es lo que es?
Claro que, de ahí hasta lo que conocemos por ¡Vida!, el trecho es grande y en eso andamos. Buscamos incansables una explicación satisfactoria que nos diga lo que la vida es pero, el enigma continúa y los conocimientos se limitan a niveles locales de cuestiones muy concretas que, de ninguna manera, explican lo que queremos saber.
Sí, la vida es un gran misterio, y, me da la sensación de que, como el Universo es igual en todas partes… ¡Existen muchos mundos que la contienen! Pensar que en tan inmenso universo solo estamos nosotros y las especies que nos acompañan… ¿Es una barbaridad!
La ciencia continúa en su intento de dar respuesta a los misterios de los orígenes de la vida sobre la Tierra. Esta vez, un grupo de químicos cree haber dado con nuevas pistas sobre la aparición de las primeras moléculas como almacenes de información genética. Sus hallazgos aparecen publicados en la revista británica Nature.
La sensación que se percibe al profundizar en todo este complejo problema es el de que, todo ha surgido a partir del Caos, inmerso en una gran complejidad de factores que no siempre hemos podido comprender. Otra paradoja adicional de la vida concierne a la extraña conjunción de permanencia y cambio (¿o, es adaptación?). A este antiguo rompecabezas se suelen referir los filósofos como el problema del ser frente al devenir. El trabajo de los genes consiste en replicarse, en conservar el mensaje genético. Pero sin variación, la adaptación sería imposible y los genes finalmente se agotarán: adaptarse o morir es el imperativo que nos impone la Naturaleza.

Pero, ¿Cómo coexisten conservación y cambio en el sistema? Esta contradicción yace en el corazón de la biología. La vida florece en la Tierra debido a una serie de tensiones creativas que existen y son creadas por la propia Naturaleza y que, finalmente, se acoplan y compensan para que todo transcurra en armonía dentro de una rica variedad de cuyas reglas del juego, en realidad, no tenemos ni idea.
Muchos son los puntos en los que nos podríamos fijar para tratar de indagar lo que realmente pasó para que, en la Tierra, surgiera la vida.
![]()
Imagen de satélite del Lago Acraman; Captura de pantalla de NASA World Wind
Por ejemplo, el lago Acraman (un gran lago seco, de forma aproximadamente circular y de unos treinta kilómetros de diámetro) situado en Australia del Sur, a doscientos kilómetros de Port Augusta, en el límite de la llanura de Nullarbaor, aunque nos pueda parecer como otro lago seco cualquiera, resulta que el Acraman no es un lecho lacustre ordinario.
Hace aproximadamente unos seiscientos millones de años, un meteoro gigante cayó del cielo y abrió un enorme agujero en lo que ahora es la península de Eyre. El agujero original media al menos noventa kilómetros de diámetro y varios de profundidad. El lago Acraman de hoy es todo lo que queda de aquella enorme cicatriz, un testigo mudo de un antiguo cataclismo de proporciones impresionantes. El daño físico causado por el impacto supera todo lo imaginable. ¡La caída de un pedrusco de cien mil millones de toneladas y varios kilómetros de diámetro!
Claro que, tal suceso, no fue un hecho aislado. Cada pocos millones de años un cometa o un gran asteroide golpea la Tierra y, cada vez hay más evidencia de que los impactos cósmicos han tenido una influencia capital en la evolución de la vida en el planeta al provocar extinciones en masa. Los impactos cósmicos no sólo han alterado el rumbo de la evolución, sino que también desempeñaron un papel crucial en el origen de la vida.
![]()
Este enorme crater irregular, de unos 3 kilómetros de diámetro es el Glosses Bluff, en Australia. Se calcula su edad en unos 140 millones de años. Ante acontecimientos como este, nos preguntamos: ¿Estamos seguros? ¡De ninguna manera¡ Y, sin embargo, sucesos como este pudo traer la vida a nuestro planeta.
Hasta hace poco tiempo, los científicos apelaban fundamentalmente a la química y a la geología en sus intentos de explicar la biogénesis. Se trataba a la Tierra como un sistema aislado. Pero en las últimas décadas se ha asumido que, la realidad, es que la Tierra es simplemente una parte de un todo y, siendo así (que lo es), hay que tener en cuenta la dimensión astronómica de la Vida. Para entender cómo empezó la vida, parece que tenemos que buscar respuestas en las estrellas.

Hasta Lucrecio, el poeta-filósofo romano, con algún poema, trató de convencernos de que no estamos solos en el Universo. Él argumentaba que si el Universo estaba hecho de átomos idénticos y sujeto a leyes universales de la Naturaleza, entonces los mismos procesos que dieron lugar a la vida en la Tierra deberían también dar lugar a la vida en otros mundos. El argumento se remonta al atomista griego Epicuro y es, muy convincente pero, de momento, no sabemos si es correcto.

Yo, hace tiempo que aposté por él, la vida debe estar presente ¡en tantos lugares!
Claro que todo esto, no responde a la pregunta:
¿Qué es la vida?
Emilio Silvera Vázquez
Oct
28
¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!
por Emilio Silvera ~
Clasificado en General ~
Comments (5)
![]()
Podemos leer en las piedras… ¡Cuentan tantas historias!
Estas extrañas rocas podrían ser la prueba más antigua de vida en la Tierra
Según las investigaciones más recientes, hay varios candidatos para ser considerados la formación rocosa más antigua: parte del cinturón de rocas verdes de Isua (Groenlandia), el terreno Gneis Narryer (Australia), el cinturón de rocas verdes de Nuvvuagittuq (Canadá) o el Gneis Acasta, en el cratón Slaves (Canadá).
Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el ambiente
en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biología responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.

Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de datos
del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.
El vestigio geológico, como dijo James Hutton, no presenta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente puede
considerar los vestigios del principio de la vida.

Insectos fosilizados de millones de años de edad atrapados en el ámbar
Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.
Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil (entre
0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.

Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y también
están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.

Los Kerógenos de tipo I o Kerógeno Sapropélico es producto de la acumulación de materia orgánica en cuencas lacustres, ocasionalmente en marinas, …
Estructura molecular de los kerógenos
Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Universidad de
Los Ángeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años. Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.
“Roca perteneciente a una formación de hierro bandeado. El Fe se concentra en las bandas plateadas, mientras que en las bandas rojizas hay materiales detríticos silíceos con altos contenidos ferruginosos (que le dan ese color). Autor: desconocido.”
Los Hierros Bandeado de Isua (Groenlandia): las rocas sedimentarias más antiguas.
Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años
donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.
Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en forma
natural por acción de los rayos cósmicos y antropo-génicamente por bombas nucleares. Se desintegra en Nitrógeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de cada
mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios… del Oxígeno, de la atmósfera, etc.
En los materiales más antiguos simplemente no queda suficiente 14C para
que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que tiene
sus secretos muy bien guardados en lo más profundo de los tiempos.

El primer antepasado común de las plantas y de las algas
Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.

Ahora
Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.
Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.


:format(jpg)/f.elconfidencial.com%2Foriginal%2F165%2F1c0%2Fe12%2F1651c0e123c3eee33546e25e9cf63cf5.jpg)
¡La Vida! Que estuvo presente en el pasado… ¡De tantas maneras!

Estas son las formas de vida más antiguas conocidas
Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía solar
). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.

Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al microscopio
electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.

Restos de tierra fósil hallados en Groenlandia
Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.

Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años
Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.


Bacterias fósiles
Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, esta
materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diagénesis.


Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas. Por ejemplo: En la luna Encelado, en nubes interestelares y en los lugares menos esperados. Ahí están.
El producto final de esta
degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.

“Astrónomos que trabajan en el Atacama Large Millimeter/submillimeter Array (ALMA) han descubierto la presencia de moléculas orgánicas complejas en una estrella en formación, conocida como MWC 480, y que está a 455 años luz de distancia. Este hito parece dejar claro que esas moléculas, fundamentales para la vida, están presentes en todo el Universo.”
También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados desde
hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.
![]()
Mapa de Australia con la región de Pilbara coloreada en rojo

Fósiles de cascarones y de manto bacteriano en los sedimentos de Pilbara, Grupo de Warrawoona.

El grupo Warrawoona y Cratón de

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental emergente
. La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.


Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares cálidos y son el resultado de la unión de seres unicelulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y cuando
una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
“Las nefritas del este de Pilbara comprende sobre todo rocas volcánicas de facies de nefritas, correspondientes al Grupo Warrawoona, al cual se data entre 3.517 y 3.325 millones de años, y cantidades menores de rocas sedimentarias metamórficas así como varios tipos de rocas ígneas.”
“Rocas metamórfica de color blanquecino, frecuentemente con granates almandinos incrustados. Las granulitas (del latín ‘granulum’, pequeño grano) son rocas metamórficas que han sufrido durante su metamorfismo unas elevadas temperaturas. Debido a ello, presentan una textura granoblástica, esto es, que los minerales cristalizados que contiene poseen todos un tamaño apreciable y homogéneo. Son de gran interés en geología debido a que uno de sus lugares de aparición son las dorsales oceánicas“

- Fragmentos de rocas creados por abrasión mecánica por la propia acción del viento, aguas superficiales, glaciares y expansión-contracción térmica por variaciones estacionales o diurnas.
- Suelos, los cuales son creados por la descomposición química de las rocas mediante la acción combinada de ácidos débiles disueltos en agua superficial y meteórica, hidrólisis, ácidos orgánicos, bacterias, acción de plantas, etc.
La erosión es uno de los principales actores del ciclo geográfico.

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a esta
identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.


Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico como
por su edad.
Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un registro
fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.
Las cianobacterias como estrellas: hoy brillan, con un origen milenario
Como
decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. Para
ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no puede
distinguierse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que só piede distinguierse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.

Mineral de Circón:
El circón o como también se le conoce, el Zircón es un tipo de mineral que entra dentro del grupo de los nesosilicatos. Esta dentro de la clase 9 de la escala de Strunz y puede encontrarse en la naturaleza bajo diferentes colores, aunque la gran mayoría de piedras suele ser de color azul.
Hablamos de un mineral que se conoce desde la edad media, lo que hace que sea un mineral que nos ha acompañado durante muchos siglos. Como es un mineral muy bonito, se usa mucho en el mundo de la joyería.
Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los aviones: un isótopo que no se pierda fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuentran en los granitos y otras rocas ígneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el momento
de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el isotopo 235U, menos
abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. Esta
peculiaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos saber la edad de los fósiles hallados en ellas.
En la actualidad, nuestro conocimiento de la vida en ambientes arcaicos es a un tiempo frustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organismos complejos, ¿Qué clase de células vivían en tiempos aún más lejanos? Y, en última instancia, ¿Cómo pudieron surgir?
¿Cuál es el origen de la vida?
¿Quién puede contestar esa pregunta?
La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las instrucciones
que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en laas explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.

Muchos son los planetas situados en la zona habitable de “sus estrellas”
A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, ssigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de froma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una parte
muy superficial.
Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten desde
la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.
¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.
Emilio Silvera V.
Oct
28
¿Qué ha pasado en la Tierra que no conocemos?
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
















Totales: 81.847.702
Conectados: 51











































