Nov
6
Curvatura del espacio-tiempo, densidad crítica, fuerzas…
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Hay que entender que el espacio-tiempo es la descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.
De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que sucesos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.
La curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias ( entre otros ).
En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.
Nov
4
Estamos rodeados de misterios que sabemos resolver
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Eddington siempre creyó y, confiaba, en que podría crear una teoría que entretejiera el mundo macroscópico de la Astronomía y la Cosmología con el mundo subatómico de protones y electrones. Sus números cósmicos eran inusuales en muchos aspectos. En primer lugar, por supuesto, nadie tenía ninguna idea de por qué tomaban los valores numéricos concretos que tenía. En segundo lugar, abarcaba una enorme variedad de tamaños.
La razón de masas protón-electrón y la constante de estructura fina no están demasiado lejos de número puros próximos a uno y presumiblemente podrían ponerse como pequeños productos de números tales como 2, 3 o π en las fórmulas matemáticas. Esto es lo que Eddington esperaba. Pero los otros dos números que seleccionó son completamente diferentes. Son enormes. La aparición de un número como 1040 en una fórmula en Física necesita una aplicación muy especial, o al menos una razón que sea muy diferente de aquellas que estamos acostumbrados a encontrar para las cosas en ciencia. Y lo peor de todo, el número muchísimo mayor Nedd = 1080, no sólo adolece de un problema de credibilidad aún más grande, sino que es prácticamente cuadrado del primer número grande.
¡No puede ser pura coincidencia!
Eddington creía que si había un número que definiera nuestro Universo, tenía, por fuerza que estar enlazados con estos.
Yo no tengo una teoría que pueda explicarlo, pero he pensado muy profundamente en conjeturas que puedan explicar los número más pequeños próximos a 137 y el resultado de hallar la razón entre la mpr/ me ≈ 1840. Estos números controlan casi todas las características generales de los átomos y las estructuras atómicas.
Siempre se ha especulado con esta o aquella teoría o con este o aquel parámetro, y, como no podía ser de otra manera, también en un tiempo se habló de la G variable, es decir, Gamow especuló con la posibilidad de que la Ley de la Gravedad Universal, no hubiera sido siempre la misma o de la misma intensidad.
Oct
24
La Fisica que tambien, como nosotros, evoluciona.
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Sobre el modelo estándar de la física de partículas. Los orígenes de la moderna física de partículas.
La ecuación de Dirac para el electrón supuso un momento crucial para la física en muchos aspectos. En 1928, cuando Dirac propuso su ecuación, las únicas partículas conocidas para la ciencia eran los electrones, los protones y los fotones. Las ecuaciones de Maxwell libres describen el fotón (como fue previsto por Einstein en 1905) en un primer trabajo cuyas ideas fueron desarrolladas por Einstein, Bose y otros, hasta que en 1927 Jordan y Pauli proporcionaron un esquema matemático global para describir los fotones libres de acuerdo con la teoría de Maxwell para el campo libre cuantizado.
Además, tanto el protón como el electrón, parecían estar muy bien descritos por las ecuaciones de Dirac. La interacción electromagnética, que describe la influencia de los fotones sobre los electrones y los protones, estaba excepcionalmente tratada mediante la receta de Dirac, a saber, mediante la idea gauge (tal como fue introducida básicamente por Weyl en 1918), y el propio Dirac ya había empezado a construir el 1927 una formulación de una teoría completa de los electrones (o protones) en interacción con protones.
Así pues, todas las herramientas básicas parecían estar más o menos a punto para la descripción de todas las partículas conocidas de la naturaleza, junto con sus más destacadas interacciones.
Los físicos de la época no eran tan ilusos como para pensar que todo aquello les pudiera llevar pronto a una “teoría del todo”. Eran conscientes de que, ni las fuerzas necesarias para mantener unidos los núcleos (las que ahora llamamos nuclear fuerte) ni los mecanismos responsables de la desintegración radiactiva (ahora fuerza nuclear débil) podrían acomodarse sin importantes avances adicionales.
Oct
22
Cosas que nos gusta conocer
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Pero volvamos al trabajo y continuemos repasando cosas interesantes y viajemos hasta el siglo XIX, que fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.
La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.
Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad –comunicaciones telegráficas, iluminación, tranvías y metros, etc.–) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.
El punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.
Oct
18
Dos verdades incompatibles
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (3)
El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia hace décadas. El problema es el siguiente:
Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.
El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.
Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.
Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.
















Totales: 83.960.706
Conectados: 75






















