sábado, 04 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Seguimos avanzando para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un equipo internacional de astrónomos ha logrado retratar una colisión entre dos galaxias que tuvo lugar cuando el universo tenía sólo la mitad de su edad actual gracias a la combinación de telescopios, situados tanto en el espacio como en tierra, y a una lente cósmica “infinitamente más grande”.

Según informó hoy el Observatorio Europeo Austral (ESO por sus siglas en inglés), los científicos utilizaron esta lente cósmica junto con diversos telescopios para revelar detalles de la galaxia H-ATLAS J142935.3-002836

 

 

El equipo de astrónomos encontró la galaxia H-ATLAS J142935.3-002836 durante un sondeo del proyecto H-ATLAS y, mediante una “extensa campaña de seguimiento con los telescopios más potentes”, consiguieron demostrar que el objeto que se observa a través de la lente era una colisión galáctica que da lugar cada año a cientos de nuevas estrellas.

En concreto, los científicos utilizaron tres telescopios del Observatorio Europeo Austral (ESO por sus siglas en inglés): el ALMA, el APEX y el VISTA, situados en el desierto de Atacama (Chile), los telescopios espaciales Hubble, de la NASA y la Agencia Espacial Europea (ESA por sus siglas en inglés) y Spitzer, de la NASA, y los terrestres Gemini Sur y Keck-II entre otros.

ALMA and a Starry Night.jpg

… poderosa herramienta para estudiar las primeras estrellas que surgieron hace miles de millones de años. (Archivo). El telescopio Atacama Pathfinder …

Resultado de imagen de El telescopio Atacama Pathfinder Experiment (APEX)Resultado de imagen de El telescopio Atacama Pathfinder Experiment (APEX)

El telescopio Atacama Pathfinder Experiment (APEX), ubicado en el desierto de Atacama, cuenta con un nuevo instrumento, que tras las primeras pruebas captó una imagen de la zona de formación estelar NGC 6334, (la Nebulosa de la Pata de Gato) en la constelación austral de Scorpius (El Escorpión), cuyo resultado es notablemente mejor que imágenes anteriores obtenidas por el telescopio de esta misma región.

Fuegos ocultos de la Nebulosa de La Llama

El Observatorio Europeo Austral (ESO por sus siglas en inglés) está de enhorabuena: estrena VISTA, un nuevo y potente telescopio. Ubicado en el Observatorio de Paranal, en pleno desierto de Atacama chileno, VISTA tiene un espejo de 4,1 metros de largo y las mismas cualidades excepcionales de observación de su ‘compañero’, el Very Large Telescopio (VLT). El telescopio ha sido desarrollado por un consorcio de 18 universidades del Reino Unido.

Su primer trabajo ha sido conseguir esta espectacular imagen de la Nebulosa de la Flama,una nube de formación de estrellas de gas y polvo en la constelación de Orión. Gracias a la tecnología infrarroja de VISTA, la imagen permite ver los objetos que ocultan las nubes de polvo y nos muestra las jóvenes estrellas que se ocultan tras ellas.

Resultado de imagen de El esquema muestra cómo cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito de la imagen: ESO/M. Kornmesser.

El esquema muestra cómo cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito de la imagen: ESO/M. Kornmesser.

Los potentes Telescopios con prestaciones increíbles con los que hoy pueden contar los Astrónomos de todo el mundo, posibilitan que se puedan captar objetos de increíble belleza y, sobre todo, fenómenos que nos enseñan lo que ocurre en el Cosmos, en el que ahora sabemos que nada es eterno ni estático. Hay presente fuerzas que hacen posible los cambios por medio de interacciones gravitatorias, electromagnéticas, de radiación y de la estabilidad de los átomos gracias a la fuerza nuclear fuerte que, hace posible la existencia de todos los objetos visibles o no, conformado de miles de millones de moléculas formadas por átomos que se juntan. Todo lo que vemos son Quarks y Leptones que se disfrazan de estrellas, mundos o galaxias.

Resultado de imagen de El esquema muestra cómo cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito de la imagen: ESO/M. Kornmesser.

    ALMA capta la imagen de dos galaxias que se juntan

Como podemos ver aquí, la tendencia de todo, es la de juntarse. Existe una fuerza irresistible que llama a esa unión y, sin embargo, el Universo en su contexto general más amplio, se expande sin cesar y, cada día que pasa, las galaxias están más lejos las unas de las otras, salvo las que son vecinas y siguen juntas por efecto de la Gravedad.

El Universo será cada vez más frío, más grande, y más solitario.

¡Qué porvenir!

emilio silvera

¿Que dónde estamos? ¡En un Universo dinámico!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Estamos inmersos en una inconmensurable grandeza de variedad y coloridos escenarios en los que están presentes las fuerzas fundamentales del universo y las constantes que hacen posible que, formas de vida de cualquier índole que podamos imaginar, estarán pululando en sus ecosistemas y habitats, sin que nada pueda evitarlo, si lo pensamos bien, amigos míos, parece como si el universo hubiera sabido que nosotros, teníamos que venir.

Dibujo20150317 Principle of the fuzzy time dispersion measurement - nphys3293-f1

John Wheeler propuso que el espaciotiempo en la escala de Planck es una espuma cuántica. Una teoría cuántica de la gravedad que describa esta espuma cuántica debería violar la simetría de Lorentz de la teoría de la relatividad. Para explorar esta espuma cuántica, Giovanni Amelino-Camelia y varios colegas propusieron en 1998 estudiar la relación energía-momento para un fotón que haya recorrido distancias muy grandes, es decir, estudiar si la velocidad de un fotón en el vacío depende de que su energía (no es constante).

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas iguales en potencia crea la estabilidad. Con los átomos ocurre lo mismo,la carga positiva de los protones es  igualada por la negativa de los electrones.

 

             Hemos sabido llegar a los dos extremos desde lo pequeño a lo grande

Hemos podido llegar a unas alturas en el mundo de la exploración científica que, nos posibilita reconocer los impactos de los cambios que se producen con el devenir del tiempo en la Naturaleza y, hemos llegado a comprender que, el Universo, es dinámico. Hacia finales del siglo XIX se había llegado a saber que hubo un tiempo en que la Tierra y nuestro Sistema solar no existían; que la especie humana debía haber cambiado en apariencia y en el promedio de su capacidad mental a lo largo de enormes períodos de tiempo; y que en cierto sentido, amplio y general, el Universo debería estar degradándose, haciéndose un lugar  hospitalario y ordenado. Durante el siglo XX hemos podido ampliar esa imagen de un Universo cambiante.

Delante de nuestros propios ojos podemos contemplar  cambia, por ejemplo, el clima y la topografía de nuestro propio planeta y de todas las especies que en él están presentes en sus distintas formas de vida que, como muestra cercana de lo que ocurre en cualquier otro lugar del Universo, nos sirve de Laboratorio para la observación de la dinámica universal.

Hemos descubierto que todo el Universo de estrellas y galaxias está en un continuo estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan  de otros hacia un futuro que será distinto del presente. Hemos empezado a darnos cuenta de que vivímos en un “Tiempo” prestado. Los sucesos astronómicos catastróficos son comunes; los mundos colisionan. El planeta Tierra ha sufrido en el pasado impactos de cometas y asteroides. Un día se acabará nuestra suerte; el escudo que tan fortuitamente nos proporciona el enorme planeta Júpiter (leer la noticia de más abajo), que guarda los confines exteriores de nuestro Sistema solar, no será capaz de salvarnos.

 

Todos sabemos de las inmensas consecuencias que el impacto de un gran objeto sobre la Tierra tendría. Los cráteres que jalonan la superficie terrestre por todo el planeta nos hablan de lo que pasó en el pasado y,  eso, amigos míos, no tenemos muchas soluciones. Claro que todo es cuestión de tiempo y, al final, hasta nuestro Sol morirá para convertirse, primero en una gigante roja que sobrepasará Mercurio y Venus y se quedará muy cerca de nuestro planeta, para entonces, las temperaturas subirán y los océanos se evaporarán, la vida, tal como la conocemos, ya no estará en este vergel que, durante miles de años, nos ha dado cobijo a nosotros y a otros muchos seres.

Sí, las consecuencias del Caos son impredecibles. Nosotros hemos reconocido los secretos simples del caos y la impredecibilidad que asedian a tantas partes que rodean a nuestro mundo. Sí, es cierto que entendemos que nuestro clima es cambiante pero, no podemos predecir esos cambios. Hemos apreciado las similitudes entre complejidades como ésta y las que emergen de los sistemas de interacción humana -sociedades, economías, ecosistemas…- y, , del interior de la propia mente humana.

Todas esas complejidades tratan de convencernos de que el mundo es como una montaña rusa desbocada, rodando y dando bandazos; que todo lo que una vez hemos tenido por cierto podría ser derrocado cualquier día, sin que nosotros, pobres mortales, podamos evitarlo y, algunos, incluso ven semejante perspectiva como una razón  sospechar de la ciencia, como si produjera un efecto corrosivo sobre los fundamentos de la Naturaleza humana y de la certeza, como si las construcciones del Universo físico y el vasto esquema de sus leyes debiera haberse establecido pensando en nuestra fragilidad psicológica.

 

La ilusión de realidad la hemos experimentado todos en los sueños. Sin embargo, también estando despiertos estamos “viendo” una “realidad” que no existe, sólo está en nuestras mentes. El caso es que, la materia sólida que vemos, en realidad, en su mayor parte, esta conformada por espacios vacíos.

Pero hay un sentido en el que todo  cambio es una ilusión. No constituye toda la historia sobre la Naturaleza del Universo. Hay tanto un lado conservador como un lado progresista en la estructura profunda de la realidad. A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos de la fábrica del Universo que son misteriosos en su inquebrantable constancia. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar.

Lo mismo que existen los hilos invisibles que mantiene unidas a las galaxias, de la misma manera, hay un hilo dorado que teje una continuidad a través de la Naturaleza. Nos llevan a esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra; que fueron y serán las mismas en otros tiempos además de hoy; que  algunos casos, ni la hiostoria ni la geografía importan y, son como leyes inamovibles, no hechas por el hombre que, según hemos podido llegar a saber, están por encima de todas esas cuestiones terrenales en las que el hombre ha intervenido de una u otra manera. De hecho, quizá sin uns substrato semejante de realidades invariables no podría haber corrientes superficiales de cambio ni ninguna complejidad de materia y mente.

Los secretos más ocultos del Universo están codificados en unos valores numéricos, aparentemente eternos, a los que llamamos “constantes de la naturaleza”.  ellas se encuentran algunas tan famosas como la de la gravitación universal, G, la de la velocidad de la luz, c, o la de Planck, h. Pero, ¿son las “constantes de la naturaleza” realmente constantes? ¿Son las mismas en todas partes? ¿Están todas ellas ligadas? ¿Podría haber evolucionado y persistido la vida si fueran ligeramente distintas? Claro que, estos enigmas nos conducen hasta las fronteras más ignoradas de la ciencia, nos desvela las profundas implicaciones que estas constantes tienen para el destino del universo y el lugar de los hombres en él y, aunque conocemos sus valores, sus números, no podemos dar una explicación de por qué resultan ser esos.

Sí, confinados en un hermoso planeta desde el que, mediante el ingenio y la imaginación, tratamos de escpaar para saber, lo que existe fuera de nuestro entorno, en regiones remotas del Universo a las que no podemos llegar. Sin embargo, no perdemos la esperanza de que, algún día…

Y, mientras tanto, nosotros los humanos, una especie que ha logrado la consciencia de SER, estamos aquí confinados en este hermoso planeta que llamamos Tierra y,  ella, tratamos de desvelar esos misterios y otros muchos llenos de secretos que en la Naturaleza subyacen para que los podamos desvelar. Parece mentira que en un planeta igneo, incandescente, podemos ver ahora nuestro hermoso planeta que desde hace cuatro mil millones de años acoge la Vida. “Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivímos en un tiempo prestado.”

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las cosas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la Naturaleza. ¿Recordáis el 137? Ese  puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son,  la razón de sus valores sigue siendo un secreto profundamente escondido.

Y, a pesar de todo esto, el Universo, sigue siendo dinámico y cambiante de tal manera que no deja de evolucionar y, estrellas que hoy podemos ver brillando en el cielo, “mañana” habrán desaparecido siempre dando lugar a otros objetos y otras conformaciones pero, ni la masa ni la energía, habrán cambiado en el Universo.

Pero, y nosotros…¿habremos cambiado?, o, quizá como esas estrellas, tampoco estaremos aquí para  el Universo alcance esa fase final del frío absoluto en la que nada, ni el tiempo ni el espacio se podrá mover y, si eso llega… ¡dónde estarán los pensamientos de tantos?

emilio silvera

El Universo dinámico

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nacimiento de una estrella (IRAS-Renacuajo) captado desde el Hubble.

            El Hubble captó el nacimientio de una estrella en el Espacio lejano. Le llaman renacuajo

En muchos de los trabajos aquí presentados he procurado explicaros lo que son las estrellasl, como se forman, como evolucionan y finalmente mueren para convertirse en otro objeto distinto. Durante sus vidas, durante miles de millones de años, las estrellas hacen posible que mediante el proceso de fusión, unos elementos se conviertan en otros cada vez más complejos para que sea posible, como ahora sabemos, la existencia de todos esos elementos que hemos relacionado en la Tabla Periódica, los más complejos formados en explosiones de Supernovas.

materia estados

                              En nuestro Universo, el Plasma es el estado más común de la materia

Las estrellas son cuerpos celestes compuestos de materia del plasma, o de materia degenerada, que se concentra en un solo lugar por la fuerza de la gravedad. Están formadas principalmente por hidrógeno y helio. Estrella a lo largo de su vida produce la radiación electromagnética en forma de luz visible a través de los procesos de fusión de átomos de hidrógeno en el núcleo.

“Hoy en día, es muy fácil poder ver y disfrutar de hermosas imágenes astronómicas con mucho muy coloridas, que realmente parecen unas verdaderas obras de arte. Sin embargo, cuando tenemos la oportunidad de mirar estos objetos a través de un telescopio, se ven en “blanco y negro” lo que puede representar una decepción mayúscula para alguien que esperaba ver a todo locos un objeto del cielo profundo.”

 

 

The Eta Carina Nebula

 

                                                                                   Eta Carinae – NGC 3372

“¿Sera acaso que los astrónomos nos mienten mostrándonos imágenes falsas? La respuesta es la siguiente, los instrumentos actuales para fotografiar el cielo, son tan sensibles a la luz, que pueden captar el color real de los objetos que se encuentran a millones de años luz, almacenándola en medios digitales e interpretando el color, pero nuestros ojos, no son capaces de almacenar luz, como lo hacen los aparatos electrónicos, y debido a la poca cantidad de luz que nos llega a nuestra vista, solo vemos con los “bastones” de nuestros ojos, células que son más sensibles a la luz, pero que no captan el color.”

 

 

 

                                                      Esta es la Nebulosa Roseta. NGC 7635

¿Cómo estan formadas las estrellas? están formadas en las nubes de materia interestelar, compuesta principalmente de hidrógeno. Una cuarta parte se compone de helio, mientras que el 1% restante es una mezcla de polvo y otros átomos. Esta nube es densa, y los átomos de hidrógeno mismo se combinan para hidrógeno molecular. Nube molecular se forma en fase terminal, lo que aumenta su tamaño y peso. La densidad de la nube está a unos pocos millones de partículas por centímetro cúbico, y el peso de 100 000 a 10 000 000 masas solares. El tamaño es enorme, de 50 a 300 años luz. Como una nube fría y fina, y el proceso de su creación, dura un tiempo relativamente corto.

https://upload.wikimedia.org/wikipedia/commons/7/7f/NGC_6745.jpg

                                   El Colapso gravitatorio del Gas y el Polvo hace que nazcan nuevas estrellas

Estrellas masivas

“Cuando una estrella sobrepasa en masa el valor límite de Chandrasekhar, gasta rápidamente su combustible y empieza a comprimirse. No hay nada que detenga su colapso: la fuerza de compresión gravitacional es tan intensa que las partículas materiales que la conforman ya no obedecen el principio de exclusión y todas terminan por estar en la misma posición y con la misma velocidad, justamente, un punto sin masa, en el espacio.

Ese punto es una singularidad, con una densidad de cientos miles de millones toneladas por centímetros cúbicos. En este caso, la masa no se habría destruido porque sería una violación al principio de conservación de la materia, sino mas bien, transformada en energía gravitacional de acuerdo a la ecuación de Einstein E= mc2.”

 

 

 

El recorrido que hacen las estrellas desde que “nacen” en la Nebulosa, hasta que consumen su combustible nuclear de fusión, es fascinante. Y, según la masa que puedan contener, finalizarán sus vidas como enanas blancas, estrella de neutrones o agujeros negros.

¿Qué sucede a una estrella, cuando se “quema”? Núcleo de la estrella comienza a colapsar bajo su propio peso, mientras que las capas exteriores son violentamente expulsados​​. En función del peso que la estrella estaba en el principio, se puede transformar en una enana blanca (con aproximadamente el mismo tamaño de la Tierra), que después del enfriamiento se convierte en un enano negro. Si la masa de la estrella es de 8 masas solares, entonces tras el derrumbe ocurre la erupción, y una explosión crea la supernova. Pero cuando la masa de la estrella supera las 10 masas solares, cuando colapsa forma un agujero negro.

También hemos hablado aquí, de las galaxias y sus diferentes tipos, de radiogalaxias y de los cuásares, además de otras cuestiones de interés que, en todo momento, he tratado de explicar de manera muy sencilla con el objeto de que su comprensión sea fácil para las personas no versadas en Astronomía.

Es preciso que todos sepais que, en cualquier región del Universo, por muchos años luz que de nuestra Galaxia esté alejada, las leyes que rigen son las mismas que aquí, en nuestra región, interaccionan con la materia. Todo el Cosmos es lo mismo en cualquier lugar. Los Cúmulos de Galaxias y los espacios “vacíos” que existen entre ellos, las Nebulosas, los Agujeros Negros que ocupan el corazón de las Galaxias, el gas y el polvo interestelar que forman nuevas estrellas, y, en fin, todas las maravillas que a través de los procesos nucleares, forman la materia compleja a partir del Hidrógeno y del Helio.

Descubren restos de la materia prima original del Universo

Simulación computacional del gas pristino. Cuando salió la noticia del descubrimiento, se pudo leer:

“Astrónomos de la Universidad de California en Santa Cruz han encontrado, por primera vez, restos de la materia prima original del Universo en nubes de gas que datan de la noche de los tiempos. Estas nubes contienen remanentes absolutamente intactos del gas «limpio» que apareció en los primeros minutos después del Big Bang y que nunca llegó a formar parte de las estrellas. El hallazgo, que aparece publicado en la revista Science, coincide con las predicciones teóricas sobre los orígenes de los elementos en el Cosmos.

Descubren restos de la materia prima original del Universo

 

 

Solo los elementos más ligeros, principalmente hidrógeno y helio, se crearon en el Big Bang. A continuación, tuvieron que pasar varios cientos de millones de años para que grupos de este gas primordial se condensaran para formar las primeras estrellas, momento en el que los elementos más pesados se forjaron. Hasta ahora, los astrónomos han detectado siempre «metales» (término para referirse a todos los elementos más pesados que el hidrógeno y el helio) en cualquier lugar que buscaran en el Universo.”

 

Antes de que se formaran las primeras estrellas, el 75% del material era Hidrógeno

 

Hidrógeno y Helio es el material primario del Universo y, a partir de ellos, se forman las estrellas que convierten ese material en una especie de plasma a altas temperaturas que en la superficie de la estrella puede ser de 6.000 grados y en el núcleo de 15 millones.

La fusión nuclear, convierte el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, y, de esta manera hasta llegar al hierro. Otros materiales más complejos se producen cuando las estrellas supermasivas explotan en supernovas sembrando el espacio con una nueva Nebulosa y, su núcleo se convierte en una estrella de neutrones o en un agujero negro.

Pero veamos algún objeto más de los que pueblan el inmenso espacio del Universo.

La luz está compuesta por fotones y precisamente ya se ha dicho que es la luz la que tiene el record de velocidad del universo al correr a unos 300.000 Km/s, exactamente 299.792’458 Km/s.

¿Y los neutrinos?

Imagen relacionada

Existen 3 tipos de neutrinos y los científicos creen poco probable que haya algún otro «sabor», a menos que tenga propiedades muy diferentes a las de los encontrados. Estos se asocian con distintas partículas cargadas y de allí se derivan sus nombres: Están asociados al electrón (neutrino electrónico), al muón (neutrino muónico) y a la partícula Tau (neutrino tauónico).

Resultado de imagen de La masa de los Neutrinos

Un grupo de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) determinó que la masa de los neutrinos no excede de 0,26 electronvoltios, dos millones de veces inferior a la masa del electrón. El equipo ha descubierto que la suma de las masas de los tres tipos de neutrinos que existen (electrónicos, muónicos y tauónicos) no representa más del 6 por mil del total de la masa-energía del cosmos.

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Imagen relacionada

Los fotones son los cuantos de la luz y transmisores del electromagnetismo y de cualquier clase de radiación en el Universo.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados.

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Para capturarlos, han ideado grandes depósitos de agua pesada en las profundidades de la Tierra.

Los neutrinos atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa; son pura energía que viaja siempre por el espacio a la velocidad de la luz. En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula, pero no hay evidencia concluyente para eso.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico.

Evitamos fórmulas y explicaciones complejas.

Así fue como se dio a conocer al mundo la existencia de neutrinos.

Ahora para ir conociendo mejor el Universo, dejemos aquí explicados algunos conceptos:

Asteroide.

 

(Planetas menores; planetoides)

Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1’7 y 4’0 Unidades astronómicas del Sol (cinturón de asteroides).  El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km.), a los objetos con menos de 1 km. De diámetro.  Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km. Y unos 120 cuerpos con diámetros por encima de 130 km.

Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta, la colisión con uno de estos pedruscos enormes del espacio estelar.  La desaparición de los Dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre. Según algunos creen uno de estos cuerpos enormes cayó en Mexico y arrasó con la vida de los grandes reptiles.

Astrofísica.

Ciencia que estudia la física y la química de objetos extraterrestres.  La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están. Es una de las ciencias más antiguas, cuyo objetivo es explicar los fenómenos del Universo apoyándose en los conocimientos de la Física y otras ciencias afines. Asi también la astrofísica pretende determinar el origen, la formación y la evolución de los planetas, estrellas y galaxias.

Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra, y, de momento, se confirma que el material existente en el Universo entero, es igual en todas partes.

El Universo primitivo era un plasma, cuando se enfrió se convirtió en Hidrógeno y algo de Helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar,  en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxigeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio… uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el Universo.

Nosotros mismos, la especie humana, estamos hechos de un material que solo se puede producir en las estrellas, así qué, sin lugar a ninguna duda,  el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del Universo! Sin embargo, el hecho de pertenecer a él nos da cierta importancia, y, además, somos conscientes de Ser.

Astronomía invisible.

Estudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.

Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

Astronómica, unidad.

 

Distancia media de la Tierra al Sol, igual a 149.600 millones de km., ó 499,012 segundos-luz, ó 8’316 minutos-luz.  Cuando se utiliza para medir distancias entre Galaxias, se redondea en 150 millones de km.

Átomo.

La parte más pequeña que puede existir de un elemento.  Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose.  El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa, pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.

La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan.  Cada electrón puede ser caracterizado  por un conjunto de cuatro números cuánticos: el núm. Cuántico principal, el orbital, el magnético y el número cuántico de espín.

De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos.  Los números cuánticos definen el estado cuántico del electrón y explicar como son las estructuras electrónicas de los átomos.

En el núcleo reside casi por completo, la masa del átomo que esta compuesta, como se ha dicho por protones y neutrones que, a su vez, están hechos por quarks.

Se puede dar el caso  de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón.  En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X.  Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado.  Ese átomo exótico tiene que ser creado artificialmente y es inestable.

Resultado de imagen de El Modelo cosmológico del Big Bang

Big Bang.

Teoría cosmológica en la que toda la materia y energía del Universo se originó a partir de un estado de enorme densidad y temperatura que explotó en un momento finito en el pasado hace unos 15 mil millones de años.  Esta teoría explica de forma satisfactoria la expansión del Universo, la radiación de fondo de microondas observada, característica de la radiación de cuerpo negro a una temperatura de 3 K y la abundancia observada de helio en el Universo, formado por los primeros 100 segundos después de la explosión a partir del denterio a una temperatura de 10.000.000.000 K. Ahora es considerada generalmente como más satisfactoria que la teoría de estado estacionario de un Universo quieto e inamovible.  La teoría del Big Bang fue desarrollada por primera vez en 1.927 por A.G.E. Lamaitre (1894-1966) y retomada y revisada en 1.946 por George Camow (1904-1968). Han sido propuestas varias variantes de ella.

Resultado de imagen de La teoría de la relatividad general

La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.  La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general deja de ser válida en el Universo muy primitiva, y que el comienzo mismo debe ser estudiado utilizando una teoría cosmológica cuántica.

Con el conocimiento actual de la física de partículas de altas energías, podemos hacer avanzar el reloj, hacia atrás y a través de las eras Leptónica y la hadrónica hasta una millonésima de segundo después del Big Bang cuando la temperatura era de 1013 k.  Utilizando una teoría más especulativa los cosmólogos han intentado llevar el modelo hasta 10-35 segundos después de la singularidad, cuando la temperatura estaba en 1018 K.

En el instante del Big Bang comenzó la expansión del Universo y en ese mismo momento, nació el espacio-tiempo. En un principio la simetría lo dominaba todo y reinaba una sola fuerza unificada.  Más tarde, a medida que el Universo se enfriaba, la simetría se rompió y surgió la materia y las 4 fuerzas fundamentales que rigen hoy, la opacidad desapareció y todo fue transparencia, surgieron los fotones que transportaron la luz a todos los rincones del cosmos. Doscientos mil años más tarde surgieron las primeras estrellas, se formaron las Galaxias y, partir de la materia inerte, nosotros, la especie humana que, hoy, tan pretenciosa, quiere explicar como ocurrió todo.

Todo esto quedó bien explicado en días anteriores, sin embargo, se deja aquí un resumen como recordatorio para que todos, sin excepción, se familiaricen con estos conceptos del Cosmos.

Carbono, reacción de.

Importante proceso de fusión nuclear que se produce en las estrellas.  Lo inicia, el carbono 12 y, después de interacciones con núcleos de nitrógeno, hidrógeno, oxígeno y otros elementos, reaparece al final. Este es el fenómeno que hace posible que las estrellas estén brillando en los cielos.

En la atmósfera, el aire que respiramos hay una reducida cantidad de carbono ( CO2). Pero es suficiente para que el cuerpo la inhale, las plantas que inhalan el carbono (CO2) el cual llega a formar parte del tejido de las plantas necesitan el carbono para formar cosas las cuales para ellas son de importancia, tales como los azucares. el carbono 14 permanece poco tiempo y después regresa a su estado anterior (nitrógeno).
El científico Willard Libby dice que el C14 rompe su equilibrio en una vida media predecible, aproximadamente la mitad cambia de regreso al N14 cada 5730 años.

Cefeida variable.

 

 

 

http://2.bp.blogspot.com/-7517fVQuF-E/Ui3zl04v0uI/AAAAAAAANEk/SWyPW1sNNe8/s1600/rspuppis_bryne-790227.jpg

Ahí la tenéis. Se trata de una de las estrellas más importantes del cielo. La estrella pulsante RS Puppis  es el astro más brillante en el centro de la imagen. Es aproximadamente diez veces más masiva que el Sol y, en promedio, quince mil veces más luminosa.

De hecho, RS Puppis es una estrella Cefeida,  es decir, una estrella cuyo brillo varia de manera regular y por esto mismo se la utiliza para estimar la distancia a las galaxias cercanas. Este es uno de los primeros pasos para establecer las escalas de las distancias cósmicas, y, este tipo de estrellas se denominan estrellas variables Cefeidas.

Una estrella variable pulsante cuya periocidad (esto es, el tiempo que su brillo tarde en variar) está directamente relacionada con su magnitud absoluta. Esta correlación entre el brillo y el período hace útiles las cefeidas para medir distancias intergalácticas.

Se han combinados datos sobre las curvas de luz de estrellas variables como Delta Cephei y Beta Lyrae

Uno de los grupos importantes de gigantes o supergigantes amarillas variables pulsantes, llamadas así por su prototipo, Delta Cephei.  Este término general y aplicado comúnmente a más de un tipo estelar, en particular a los cefeadas clásicas antes mencionadas Delta Cephei, y a los menos numerosas estrellas conocidas como W virginia. En su tamaño máximo, los Cefeidas son típicamente un 7-15% mayores que en su tamaño mínimo.

Centauro A

Centauros A.

Intensa radiofuente o fuente de rayos X situada en la constelación Centauros,  identificada con la Galaxia elíptica gigante de una magnitud 7 NGC 5128.  Centauros A es una radio galaxia clásica con dos pares de lóbulos radioemisores, el mayor de los cuales extendiéndose hasta a 1’5 millones de a.l. y con un chorro que unos 10.000 a.l. de longitud.  Estando situada a 15 millones de a.luz, se trata de la radiogalaxia más cercana al Sol.  Aunque la Galaxia madre se identifica como eliptica, tiene una banda de polvo poco característica cruzándola, que se cree es el resultado de la unión de una galaxia eliptica en otra espiral.

Esta situada entre el Grupo Local y el centro del supercúmulo de Virgo.

Colapso gravitacional

 

Fenómeno predicho por la teoría de la relatividad general en el que la materia comprimida más allá de una densidad crítica se colapsa como consecuencia de la atracción gravitacional hasta que aparece una singularidad puntual.

La singularidad resultante del colapso gravitacional puede ser interpretada como una indicación de que se ha llegado al límite de la teoría de la relatividad general y de la necesidad de construir una gravedad cuántica.

La hipótesis de la censura cósmica sugiere que el punto final del colapso gravitacional debe ser un agujero negro, pues las singularidades están siempre ocultas en astrofísica, pues suministra una evidencia indirecta de la existencia de los Agujeros negros.

También, dependiendo de la masa de la estrella, cuándo finalmente agotan su combustible nuclear de fusión (hidrógeno, helio, oxigeno, carbono, etc.) y la gravedad no encuentra oposición para realizar su trabajo, las estrellas colapsan bajo su propio peso, no siempre hasta agujeros negros, como nuestro Sol un día en el futuro, podrán colapsar a estrellas enanas blancas o estrellas de neutrones y los supermasivas, estas así, serán agujeros negros.

Cometas

Miembros secundarios del Sistema Solar que, según se cree, son montones de suciedad y hielo que son residuos de la formación del sistema solar.  Se cree que hay millones de cometas en la Nube de Oort, una región esférica con un radio de treinta mil a cien mil unidades astronómicas con centro en el Sol.  Los cometas que llegan de la Nube de Oort son calentados por el Sol y desarrollan colas brillantes que los hacen visibles en los cielos de la Tierra.

Resultado de imagen de Corrimiento al rojo

Corrimiento al rojo.

Desplazamiento de las líneas espectrales en la luz proveniente de las estrellas de las galaxias distantes, que se considera producido por la velocidad de alejamiento de las galaxias en un universo en expansión (ley de Hubble). Cuando las galaxias en lugar de alejarse se acercan (caso de Andrómeda), el corrimiento es hacia el azul.

Cósmica, densidad de la materia. (Densidad crítica)

Densidad de materia que se obtendría si toda la materia contenida en las Galaxias fuera distribuida uniformemente a lo largo de todo el Universo.  Aunque las estrellas y los planetas tienen densidades mayores que la densidad del agua (alrededor 1 gr/cm3),  la densidad media cosmológica es extremadamente baja (menos de 10-29 gr/cm3, o 10-5 átomos/cm), ya que el Universo está formado casi exclusivamente por espacio virtualmente vacío entre galaxias.  La densidad media de materia determina si el Universo continuará expandiéndose o no.

La llamada densidad crítica, es la densidad media de materia requerida para que la Gravedad detenga la expansión del Universo. Un Universo con una densidad muy baja se expandirá por siempre, mientras que uno con una densidad muy alta colapsará finalmente.  Un Universo con exactamente la densidad crítica, alrededor de 10-29 gr/cm3, es descrito por el modelo Einstein- de Sitter, que se encuentra en la línea divisoria de estos dos extremos.

La densidad media de materia que puede ser observada directamente en nuestro Universo representa sólo el 20% del valor crítico.  Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico.  Las teorías de universo inflacionario predicen que la densidad presente debería ser muy próxima a la densidad crítica; estas teorías requieren la existencia de materia oscura que, hoy por hoy, es el misterio más grande de la Astrofísica.

Cósmicos, rayos.

Partículas subatómicas, principalmente protones,  que atraviesan velozmente el espacio y chocan con la Tierra.  El hecho de que sean masivas sumado a sus altas velocidades, hace que contengan considerable energía: de 108 a más de 1022 eV (electrón-voltios).

El 90% de los rayos cósmicos son protones (núcleos de hidrógeno) y partículas alfa (núcleos de helio) la mayor parte del resto.  Los núcleos más pesados son muy raros.   También están presentes un pequeño número de electrones, positrones, antiprotones y neutrinos y rayos gamma.

Los rayos cósmicos fueron detectados por primera vez durante el vuelo de un globo en 1.912 por V.F.Hess, y el término fue acuñado en 1.925 por el físico norteamericano Robert Andrews Millikan (1868-1953).

Resultado de imagen de Cosmología

En la física la cosmología se refiere al estudio de la evolución y el destino del universo, así como también al desarrollo de las teorías de la relatividad, …

Cosmología.

  1. Ciencia que se ocupa de estudiar la estructura y la composición del Universo como un todo.  Combina la astronomía, la astrofísica y la física de partículas y una variedad de enfoques matemáticos que incluyen la geometría y la topología.
  2. Teoría cósmica particular.

Cosmología constante.

Un término empleado a veces en cosmología pasa expresar una fuerza de “repulsión” o “repulsión cósmica”, como la energía liberada por el falso vacío que los modelos del Universo inflacionario consideran que potenció exponencialmente la expansión del universo.  Que exista tal repulsión cósmica o que haya desempeñado alguna vez un papel en la historia cósmica es un problema aún no resuelto, como ocurre con la constante cosmológica de Einstein.

Cúmulo de estrellas.

Conjunto de estrellas unidas por la Gravitación, más pequeños y menos masivos que las Galaxias.  Los cúmulos “globulares” son más abundantes; son viejos y pueden contener de cientos de miles de millones de estrellas; se les encuentra dentro y lejos del disco Galactico.

Se extienden sobre un radio de unos pocos megaparsecs (también existen pequeños Grupos de Galaxias, como nuestro Grupo Local de solo unas pocas Galaxias.)

Este apartado final del trabajo de hoy, es debido a una petición de un profesor amigo que, me lo ha pedido para introducir a sus alumnos en el mundo de la Astronomía y que tomen conciencia del lugar en el que se encuentra,.

emilio silvera

Lo mismo que el Universo, todo es dinámico y cambia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Maravillosa playa de la isla del océano wallpapers

Así las cosas, dentro de algunos miles de millones de años (o quizás antes), la escena que arriba contemplamos será cosa del pasado y, para cuando eso llegue, esperémos que la Humanidad haya sabido evolucionar lo suficiente como para poder haber buscado otros mundos donde instalarse. Pero, ¿qué pasará antes de que eso llegue? ¿Sabremos estar a la altura de Seres Inteligentes?

Lo misnmo el que el Universo, todo es dinámico y está sujeto al cambio

También nuestras mentes lo son, y a medida que el tiempo transcurre y observamos y tenemos experiencias, investigamos y experimentamos, llegamos a conclusiones más certeras de lo que las cosas son, de cómo es el mundo y todo lo que le rodea, el Universo en fin que, es todo lo que existe y del que en el pasado teníamos una noción muy vaga y, la mayor parte de las veces, equivocada. Ahora, aunque existen algunos rincones oscuros, al menos sabemos lo que son las galaxias, como nacen, viven y mueren las estrellas y qué cometido tienen… También podemos exponer de manera plausible (aunque no certera al 100 por 100), como pudo surgir la vida en el Universo y, más concretamente en nuestro pequeño mundo.

                La engañosa sensación de que son las estrellas las que se mueven cuando las miramos

La Tierra siempre nos pareció vasta e inmóvil, a través de dos millones de años en la prehistoria de la Humanidad nos proporcionó el escenario para poder realizar toda experiencia humana, con un cielo que no parecía otra cosa que un decorado lleno de luces que se movían. La Astronomía y la observación del espacio nos ha conducido a darnos cuenta de lo contrario: El Universo es vasto y el mundo de los hombres es pequeño.

Para cualquiera que siga el movimiento del Sol día tras día, y los movimientos de la Luna y las estrellas noche tras noche, es evidente que la Tierra constituye “el centro del universo” y que los cuerpos celestes giran a su alrededor diariamente, rindiendo homenaje a la morada del hombre. Cada día el Sol atraviesa la bóveda celeste; cada noche, la Luna y las estrellas realizan su ceremoniosa procesión a través de los cielos.

               Aún perduran los nombres de algunas constelaciones de aquellos antiguos Astrónomos

En las épocas antiguas, los hombres quedaban maravillados ante este movimiento nocturno de los cuerpos celestes y se preguntaban cuál podía ser su causa. A medida que seguían las estrellas noche tras noche, llegaron a dar un paso más, advirtiendo que sus formas no cambiaban; las estrellas de la Osa Mayor atravesabanm entonces el cielo formando una unidad, un conjunto inamovible y duradero de tal manera que hoy, aún continúa manteniéndose la figura legendaria del pasado. A partir de hechos como éste, los Astrónomos primitivos decidieron que las estrellas debían encontrarse firmemente atadas a una esfera enorme que rodeaba a la Tierra. La esfera daba una vuelta completa a la Tierra cada veinticuatro horas; cuando volvía a aparecer, las estrellas aparecían con ella. En el centro de esa esfera estaba la Tierra, sólida e inmóvil, situada convenientemente en el eje del Universo.

Algunos Astrónomos de la antigüedad en Grecia creyeron que podía ser la Tierra y no el cielo, quien giraba sobre su eje cada veinticuatro horas. Esta situación podía crear un movimiento aparente del cielo. Las estrellas podían estar fijas en el espacio, pero una persona colocada en una Tierra que rotaba sobre sí misma las vería moverse en la dirección contraria a la suya, de la misma manera en que un paisaje parece que se mueve cuando uno se encuentra subido a un carrusel o tiovivo. Y un Astrónomo griego tuvo incluso el “extraño” pensamiento de que, era la Tierra la que se movía alrededor del Sol mientras giraba sobre su propio eje. Hiparco de Samos le llamaban y, desde luego, en aquel tiempo, nadie le prestó atención, tuvo que venir Copérnico, 700 años más tarde, para que todos apoyaran esa idea que, aún entonces, algunos tacharon de locura.

Está claro que hoy, después de pasado el tiempo de saber lo que sabemos ahora, todas aquellas ideas nos parecen naturales y muy adecuadas para los tiempos que vivían y los conocimientos que, con sus escasos medios, podían alcanzar, y, sin embargo, los pensamientos avanzados eran, por lo general, objeto del idículo y el mayor escarnio sino de algo más grave aún.

Aunque ahora sabemos cómo se mueve la Tierra por el Espacio, para la mayoría de la gente de la época primitiva les parecía una estupidez que la masa de la Tierra pudiera girar sobre su eje como una peonza o viajar por el espacio como si de un barco se tratara. Evidentemente, todo aquello que no fuera más rápido que la Tierra quedaría siempre atrás; una flecha que lanzáramos al aire directamente hacia arriba debería caer al suelo  muchos kilómetros más allá; rocas y árboles deberían salir volando de una Tierra que girase sobre sí misma, de la misma manera que sale despedido el barro de la llanta de una rueda de vagón en movimiento. Desde el mismo momento que nadie había llegado a comprobar esos efectos, la Tierra debía encontrarse estacionaria, y el Sol, la Luna y las estrellas girarían a su alrededor diariamente. Así quedaba demostrado por toda la experiencia Humana.

Incisiones en huesos

Hace 32.000 años, en la era glacial, nuestros antepasados de la Edad de Piedra hacían incisiones en huesos de animales para representar las fases de la Luna. Vivían de la caza y la recolección, por lo que seguían las estrellas y predecían los cambios de estación gracias al cielo. Quizá observaban el Sol y la Luna y los dibujos que formaban las estrellas para conocer las estaciones. Probablemente así era cuando se desarrolló la agricultura y se domesticaron animales, 10.000 años antes de Cristo en Mesopotamia, la tierra fértil entre los ríos Tigris y Éufrates que ahora ocupa Irak. El cielo adquirió aún más importancia como medio para determinar la época apropiada para la siembra y la cosecha. Esas primeras civilizaciones mesopotámicas, especialmente los sumerios hacia 4.000 a. C., fueron las que dieron nombre a las más antiguas constelaciones: son las figuras que hoy conocemos como Leo, Tauro y Escorpio. Estas constelaciones señalaban puntos importantes en el recorrido anual del Sol por el cielo y constituían momentos cruciales en el año agrícola. Y, como los cielos condicionaban su forma de vida, los deificaron.

Stonehenge

Los antiguos observadores del cielo percibieron también que el Sol y la Luna parecen desplazarse atravesando 12 constelaciones que más tarde recibieron el nombre de zodiaco. Decidieron que en ellas residían los dioses del Sol y la Luna. Además, había otras cinco estrellas que recorrían el zodiaco, y cada una de ellas se consideró la residencia de un dios. Hoy sabemos que se trataba de los planetas. El zodiaco era también el lugar donde ocurrían los eclipses, poco frecuentes y muy temidos en los que la Luna se volvía de un siniestro color cobre, o la luz del Sol se apagaba por un tiempo eterno para los observadores. El cielo nocturno dejó así de ser sólo una herramienta para la agricultura y se convirtió en el hogar de los dioses y un libro ilustrado que contaba historias de importantes figuras a una gente que, a falta de escritura, carecía de otros medios para recordarlos.

Loss antiguos observadores del cielo, al no saber lo que eran, llamaban a los planetas vistos desde la Tierra “estrellas errantes”, ya que, se movían y no mantenían una posición fija o estática.

Así, se pudieron dar cuenta de que había un hecho que no estaba de acuerdo con esa imagen de una Tierra fija rodeada por una esfera de estrellas en rotación. Cinco “estrellas” no se comportaban como estrellas ordinarias; en lugar de mantener posiciones fijas en relación con otras estrellas, vagaban por los cielos, unas veces más cerca de una estrella y, otras, más cerca de otra. Los Astrónomos griegos, asombrados por el hecho de que esos cinco misteriosos objetos fueran diferentes a cualquier otra estrella, les denominaron “Errantes”, o planètès, en griego. Aquí fueron conocidos como planetas.

Los Planetas

Hoy día todos sabemos lo que es un planeta que significa un cuerpo esférico de roca y de hierro como la Tierra o Marte, o una gran esfera de hidrógrno como Júpiter o Satuno; pero aquellos astrónomos griegos y otros de su tiempo, que no disponían de telescopios, no tenían ni idea de que aquellos objetos a los que denominaban planetas pudieran ser cuperpos masivos como la Tierra. Para ellos y visto en la distancia, eran sencillamente puntos de luces parecidos a las estrellas y situados lejos, inalcanzables.

Asombrados por el movimiento errátivo de aquellos planetas, los astrónomos primitivos observaban cuidadosamente su posición, año tras año, y después de cierto tiempo, advirtieron que sus movimientos seguían una pauta. Cada planeta o estrella errante, , seguí un camino curvo en el cielo nocturno, que se dirigía primero de Este a Oeste y que, después, regresaba describiendo su curva de Oeste a Este.

Si los planetas se encontraban sujetos a una gran esfera que giraba en los cielos, deberian moverse atravesando el cielo solamente de Este a Oeste, en un recorrido fijo, igual que el resto de las estrellas. Evidentemente, no podían estar fijado a la esfera celestial. Debian estar situados en cualquier otro lugar del espacio. Pero ¿Dónde? ¿Y por qué iban y venían describiendo aquella especie de anillo?

Reflexionando sobre estas preguntas, dos astrónomos griegos llamados Apolonio el uno e Hiparco el otro, tuvieron la ingeniosa idea. Ellos defendían que los planetas estaban atados a la llanta de una rueda que giraba atravesando el cielo. Al girar la rueda por el cielo, el planeta describiría un camino curvo, exactamente como se podía observar en los planetas reales. Y, aunque aquella idea funcionó muy bien al principio… Cuando los astrónomos trataron de realizar la representar de las ruedas que iban rodando por el cielo según los movcimientos observados en los planetas, se encontraron conque era imposible hacer una imagen adecuada a menos que creyesen que las ruedas rodaban sobre otras ruedas. Es decir, un planeta se movía en la llanta de una rueda que, a su vez, se movía en la llanta de otra rueda.

Llegó Ptolomeo, en el s II d. de C. y concluyó que se necesitaba como mínimo cuarenta ruedas situadas sobre otras ruedas para describir los movimientos del Sol, la Luna y los cinco planetas -que por entonces eran conocidos-. Las ruedas rodantes de Ptolomeo parecían funcionar muy bien, pero la gente creía que su modelo celeste era demasiado complicado. Cuando Alfonso X, rey de Castilla y Aragón, oyó hablar del sistema ptolemaico, afirmó:

“Si el Señor me hubiera consultado a mí, le hubiera recomendado algo mucho más sencillo.”

 

 

 

 

Y John Milton, que hubo de enseñar el sistema ptolemaico como profesor de escuela en el siglo XVII, escribió disgustado acerca de Ptolomeo y de sus seguidores:

“Cómo discurren

Para guardar las apariciencias, cómo disponen la Esfera

Con lo Céntrico y lo Excéntrico garabateando sobre

El Ciclo y el Epiciclo, la Rueda en la Rueda…”

 

 

http://web.educastur.princast.es/proyectos/grupotecne/archivos/investiga/107sistema%20de%20ptolomeo.jpg

Sin embargo, el cuadro del Universo que poresentaba Ptolomeo era lo mejor que la mente humana, en aquellos tiempos, había podido construir, toda vez que, no se disponía de los datos más precisos que más adelante daría la observación telescópica de los cuerpos celestes -planetas y estrellas- de nuestra vecindad en el primer momento y mucho más lejos más tarde.

Pero no adelantemos acontecimientos y, fue finalmente, alrededor del 1500, cuando un clérico polaco llamado Copérnico, se hizo con una idea de Aristarco de Samos y, vino a plantear el modelo más cercano a la realidad de que era el Sol, y no la Tierra, el que ocupaba el Centro del Sistema solar y los planetas daban vueltas a su alrededor orbitándo al cuerpo mayor.

                 ¿Cómo imaginar una Tierra sin Gravedad?

Así y todo, a pesar de sus críticos, el modelo de Copérnico echó raíces en la mente de los hombres. Se comenzó a respirar un ambiente más fresco en todo aquel farragoso asunto y, desde luego, allí se entregó la llave que dio lugar a que se pudieran abrir otras puertas cerradas, a nuevas ideas y nuevos conceptos que llegaron de la mano de Kepler y Tycho Brahe y muchos otros después.

Ahora, sabiendo lo que sabemos, nos podemos asombrar de que, aquellos Astrónomos del pasado, hubieran podido creer que los planetas podían ser como Joyas pulidas y brillantes, perfectas e inmutables, mientras que la Tierra estaba formada por una sustancia ordinaria, tales como barro y agua y rocas pero, pasó el tiempo y abrieron los ojos para asombrados ver que, todos aquellos objetos maravillosos brillantes del cielo, eran también, como la misma Tierra, de barro, roca y agua esos materiales simples que van cargado de susctancias complejas que traen la vida si la radiación del Sol las calienta.

Ahora, desde la aventura que comenzó Galileo, hemos podido dejar el ámbito localista de Ptolomeo y Copérnico y nos hemos desplazado hasta un ámbito mucho mayor, en el que podemos hablar de big bang, de supercúmulos de galaxias y fusiones. Ahora sabemos cómo nacen, viven y mueren las estrellas y de qué están hechas, sabemos que algunas estrellas son pequeñas enanas rojas, otras medianas y amarillas y que también, existen estrellas gigantes supermasivas. Hemos llegado a saber que en las estrellas se producen las transiciones de fase de la materia simple en otras formas más complejas, y, sobre todo, hemos podido llegar a descubrir cómo funciona el Universo mediante cuatro fuerzas fundamentales que intervienen en lo que pasa por el todo el Cosmos. De la misma manera, llegamos a descubrir que todo lo grande (galaxias, estrellas y mundos), todo lo que podemos ver, está hecho de pequeños objetos que llamamos partículas y que son algunas elementales y otras complejas pero que, se unen en la manera adecuada para conformar todas las cosas que existen… ¿Incluídos nosotros!

Aunque el tema de hoy es bien conocido por “casi” todos, he pensado que muchos de los jóvenes que por aquí pasan, podrían necesitar tener una idea más amplia de cómo eran antes las cosas y lo que de ellas se pensaba y, de esa manera, me puse a escribir hasta dejar, este sencillo relato de lo que fue y hasta donde hemos podido llegar.

emilio silvera

Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Científicos que estudian cómo podría ser la vida vegetal en un planeta similar a la Tierra con dos o tres ‘soles’ han encontrado que podría verse negra o gris, si el sistema está dominado por una enana roja. También podrían, las plantas y vegetación en general ser del color azulado dependiendo de la luz que a ellas pudiera llegar, es decir, de qué clase de estrella las alimentara.

Resultado de imagen de Astrónomos de la NASA descubrieron el primer planeta que gira alrededor de 2 soles,Imagen relacionadaImagen relacionada

Astrónomos de la NASA descubrieron el primer planeta que gira alrededor de 2 soles, igual que el “Tatooine” de Luke Skywalker en la película “La guerra de las galaxias”. También los habrá con tres y más soles.

Las maravillas del universo son inagotables, y muy lentamente tenemos acceso a ellas. Hay lugares con tres soles de distintos colores: amarillo (como el nuestro), azul y verde, o blanco y rojo. Hay dos que casi se están tocando, sólo los separa una ligera y brillante materia cósmica que parece pura luz. Hay un mundo que tiene cientos de lunas, y no muy lejos de él brilla un Sol que no es mayor que nuestro planeta Tierra. He podido ver un núcleo atómico de 3.000 m de diámetro que gira 160 veces por segundo. Hay soles que se desplazan por el universo a velocidades enormes y bacterias que escapan de las galaxias y vagan por el cosmos hasta encontrar un planeta donde instalarse. Las nubes de gas y polvo inundan los espacios entre las galaxias, y después de girar durante miles de millones de años, se juntan y forman nuevas galaxias de estrellas y planetas.

planeta dos soles estrellas

Mundos como el que arriba podemos contemplar, existen ahí fuera. Cuando un mundo está calentado por dos o más soles, las condiciones varian de las de la Tierra y, dependiendo de la clase de estrella de que se trate, así será ese mundo y las cosas que él estén presentes. También, quién sabe, pueden existir lugares fuera de nuestro universo (algunos científicos así lo creen), en otros paralelos o en otras dimensiones que no podemos ver, y, que algún día, cuando seamos lo suficientemente listos, podremos visitar. Ya hay quien presiente la existencia de esas dimensiones más altas.

                                                  ¡Somos Universo! ¡Somos Naturaleza!

Para nosotros, pequeñas criaturas de una grandeza enorme, el universo resulta pavoroso. Pero también fascinante y maravilloso. ¡Qué paradoja! Se cuenta una anécdota de Leonardo Da Vinci que, paseando por el campo, llegó a la entrada de una profunda y oscura caverna, con la mano sobre los ojos, trató de atisbar en el interior. No se vislumbraba nada, la oscuridad era mucha e impedía la visión. Se quedó allí un buen rato, pensando qué hacer. Al fín, su curiosidad por las maravillas que allí dentro podrían estar ocultas, pudo más que el peligro de encontrar la morada de una fiera. De manera sencilla, la anéndota explica nuestra historia, siempre avanzaremos para saber, sin mirar el peligro que puede estar acechando.

¿Cómo puede algo dar miedo y placer o fascinación al mismo tiempo? Pues así es. Nos produce miedo su enormidad y nuestra ignorancia. Nos produce placer lo que vamos descubriendo y fascinación los misterios que encierra y a los que nuestra curiosidad y osadía no resiste la necesidad de desvelar.

No parece que nuestra evolución sea debida a senderos evolutivos predeterminados que conducían infaliblemente, desde formas simples, a lo que somos, al hombre; más bien, la evolución procede de un modo convulsivo, sin un plan determinado, y la mayor parte de formas de vida conducen a callejones sin salida en la evolución. Así se han extinguido tantas, y continuarán extinguiéndose. Esperemos que no estemos en la lista.

En realidad, somos el producto de una larga serie de accidentes biológicos. En la perspectiva cósmica no tememos razones de peso para pensar que seamos los primeros, que seremos los últimos o los mejores. Sin embargo, esa seria de accidentes biológicos, ¿fueron fortuitos? Ya me gustaría poder responder a esta pregunta.

Ilustración de la evolución del universo

                    ¿La Evolución del Universo? ¡La nuestra también!

A lo que sí puedo responder es al hecho innegable de que, en lo más profundo de nuestro ser habita un ente superior, algo grande capaz de lo más sublime. ¿Puede algo así surgir de la nada? ¿qué mecanismos intervinieron? ¿se debe todo al azar? ¿es la materia inerte con la química y la energía, la responsable de todo?

Me gustaría estar en ese tiempo futuro en el que la ciencia es tan avanzada que tiene como reliquias antiguas teorías como la relatividad, la mecánica cuántica y la teoría de supercuerdas. ¿Qué maravillas no tendrán entonces?

Si el dinero que se mueve en otros menesteres se hiciera en la Ciencia… ¡Dónde podríamos estar!

La ciencia avanza despacio, no porque no interese a la gente, sino porque los gobiernos no le destinan los presupuestos necesarios para que su avance esté relacionado con el conocimiento que ya poseemos. Tenemos magníficos físicos, astrofísicos, astrónomos, matemáticos y otros científicos de las distintas disciplinas que viven en la inseguridad de que el político o el organismo de turno le conceda la subvención necesaria para realizar sus proyectos. El interés general queda postergado en favor de oscuros intereses de grupos. ¡Es una vergüenza!

A pesar de todos los inconvenientes, los avances científicos y del conocimiento no pueden ser frenados. El querer saber y descubrir está asociado con una especie de energía inagotable que finalmente vencerá. La curiosidad, ese germen que llevamos dentro de nosotros y que nos empuja a saber… ¡Finalmente, vencerá!

http://3.bp.blogspot.com/-6TPKlbgZZG4/TlVHFGFNFRI/AAAAAAAABVk/lLa0blh-7zI/s1600/boson-de-higgs-particula-de-dios.jpg

                          Los secretos de la materia que estamos dejando al descubierto

En realidad, la ciencia es el poder. Por tal motivo, todos los políticos tratan de manejar el ámbito científico por si surge algo que puedan utilizar en beneficio propio y, de los militares no hablemos. Siempre mirando con el rabillo del ojo a esos posibles nuevos inventos que podrían emplear en sus locas actividades de destrucción.

La gente sencilla sí se interesa por los temas científicos, lo que ocurre es que en la niñez, en las escuelas, la enseñanza es muy deficiente, y cuando llegan a mayores, son unos incultos científicos que, de manera interesada, han sido dejados en la ignorancia por algunos.

Todos deberíamos tener un mínimo de conocimientos sobre las cuestiones importantes de nuestro mundo y nuestro universo. Saber las cosas básicas como el por qué brillan las estrellas, de qué está hecha la materia, qué son los átomos, cómo se expande el universo y que la Tierra es una nave espacial que nos lleva en un viaje alrededor del Sol y con todo el Sistema solar a través del universo a 30 Km/s.

                                            ¿Cómo se puede decir tanto con tan poco?

No puedo olvidar la fascinación que sentí cuando vi por vez primera ante mis ojos esta pequeña ecuación:  E = mc2. Su sencillez y la enormidad del mensaje que encierra, me dejaron totalmente sorprendido y al mismo tiempo, maravillado. Pues bien, lo mismo que me ocurrió a mí, seguramente le ocurrirá a muchos otros si les damos la oportunidad de conocer, de saber sobre las cosas que les rodea y con las que conviven, sin que tengan la menor idea de qué son y cómo funcionan. La gravedad, el electromagnetismo, las fuerzas nucleares… creo que todo esto, sin tecnicismos ni profundidades científicas, puede ser explicado para dar un conocimiento básico que, al menos, evite la actual ignorancia, y para conseguirlo, el único camino es la divulgación.

 Emilio Silvera (1º a la izquierda) en un debate de Astrofísica en la Asoción Astronómica 137 ehc

Mi enorme interés y afición por estos temas de la ciencia me llevó a crear una Asociación Cultural de Física y Astronomía, estándo empeñado en celebrar reuniones periódicas en las que podamos hablar de todos estos temas. No se encuentra mucho apoyo oficial en este sentido. La divulgación de la ciencia está desdeñada y parece que no interesa que la gente sepa.

He dado algunas charlas de este tipo, y en personas mayores corrientes no versadas, es difícil crear en una hora una situación que les interese. Te miran pero no te oyen. No se puede despertar en ellos interés alguno, e incluso, no es raro oír algún bostezo o ver alguna que otra cabezada de los concurrentes. ¡Una pena! Ellos no son los culpables, no les dieron la oportunidad de saber. Sin embargo, la misma situación con jóvenes, es totalmente diferente y, si se sabe despertar su curiosidad… ¡Te machacan a preguntas!

     Sí, es posible que, como leí en alguna parte: “La ignorancia del Pueblo es la materia prima del Poder”

Recuerdo con satisfacción una charla que di a los chavales de segundo de bachiller de ciencia. Éstos sí que, a los diez minutos de empezar mi charla, estaban enganchados en los átomos, en la formación de las estrellas y en las fuerzas fundamentales del universo. La charla estaba prevista de 9 a 10. Tardó algo más, hasta las 12. Durante la misma se fueron agregando profesores y personal diverso y, al finalizar, les pregunté si tenían dudas sobre lo que se había tratado. Aquello duró hasta las 14 horas. Un sin fin de preguntas me bombardeó desde los alumnos y los profesores. Fue divertido, y creo que también instructivo.

La osadía del “ignorante” no tiene límites. Recuerdo que hace años, estando por motivos de trabajo en Madrid, al regresar a mi hotel sito frente al Congreso de los Diputados, vi un movimiento de gente inusual y pregunté. Se trataba de un congreso de astrónomos y astrofísicos. No teniendo mejor cosa que hacer, y como el tema me interesaba, me procuré la manera de acceder al salón preparado a tal efecto, y asistí a unas intervenciones muy interesantes.

En el coloquio final, los conferenciantes contestaban las preguntas, y ni corto ni perezoso pregunté: “¿No es posible que el  universo, en lugar de terminar en un Big Crunch, pueda hacerlo como un enorme agujero negro que lo abarque todo?” Aquel amable caballero miró algo sorprendido hacia el lugar donde tan campechano me encontraba cómodamente sentado en mi confortable butaca (también giraron sus cabezas hacia mí los que me rodeaban), y me preguntó a su vez, “¿En qué se basa usted para preguntar eso?”. Mi respuesta, al parecer, les hizo gracia, y todo quedó en una anécdota simpática. Yo había contestado:

                       Un gigantesco agujero negro está viviendo en el centro de nuestra Galaxia

Mi contestación:

Según he leído en alguna parte, en el corazón de nuestra galaxia habita un enorme agujero negro que se traga todo aquello que se le pueda acercar, engullendo la materia de objetos como estrellas que lo hace más grande y más poderoso.

Si estos monstruos estelares son el resultado final de las estrellas supermasivas, tienen que existir a cientos de miles por el universo. Y si todos se tragan la materia circundante, ¿por qué no llegará un momento en que se traguen los unos a los otros creando un enorme agujero negro con la materia de todo el universo?

 

 

Agujero negro

 

Aunque parezca mentira, mi pregunta fue la causante de una enorme discusión. Unos estaban a favor y otros en contra de mi idea. Por mi parte, llegó un momento que cansado me marché a dormir; tenía que madrugar. Pero aquello fue muy divertido. No deberíamos sorprendernos por nada, nuestro cerebro se encuentra entre los objetos más complicados del universo y es sin duda una de las estructuras más notables que haya producido la evolución.

La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.

El cerebro humano es especial; su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la naturaleza.

                                        Su engañosa pequeñes esconde… ¡tanta grandeza!

Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiperastronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!

                                            Como un universo cuajado de estrellas nuestro cerebro es

Con tan enorme cantidad de circuitos neuronales, ¿cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento?

El límite de lo que podremos conseguir tiene un horizonte muy lejano. Desde hablar sin palabras sonoras a la (no es broma) auto-transportación. Si somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.

Resultado de imagen de Universo del futuro

                                           ¿Quién sabe lo que “mañana” podremos hacer?

Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!

Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para eso aún falta un poco, sin embargo, nosotros tenemos mucho tiempo por delante. Dejamos lo que logramos descubrir a los que nos siguen, ellos a los que vendrán después, y así hasta que nuestro destino esté cumplido. ¿Qué cual es nuestro destino? Lo he dicho tantas veces que repetirlo…

El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales como las que nos dejaron hombres ilustres que, como Einstein (por ejemplo), nos dejó dicho, por medio de ellas, como era nuestro Universo.

Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, Ramanujan, etc. que, con sus nuevas ideas, transformarán el pensamiento matemático.

Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando te acción – y de la luz (c) – la relatividad -.

Perelman es un matemático extraño, vive en Rusia, alojado en un pequeñpapartamento de 60 metros con su madre, y, en el tiempo libre sale al campo con un canato para buscar setas. Le dieron la Medalla Fiel que sería entregada por el Rey Juan Carlos en Madrid, en el Año Internacional de las Matemáticas junto con el premio por haber resuelto la Conjetura de Poincaré… ¡No compareció! Su explicación fue: “Cómo voy a recibir premios de manos de gente que no saben por qué me dan esos premios”.

Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Poincaré expuso su conjetura y ahora, más de un siglo después, Perelman la ha resuelto. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan.

emilio silvera