jueves, 06 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Teoría del proceso seguido por la Tierra en su evolución

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En este Blog, una de las premisas más importante, en realidad convertida en un Principio a seguir, es dar voz al visitante y, no sólo en comentarios, sino en los posibles trabajos que puedan querer exponer para divulgar sus ideas, y, en este caso, el visitante José C. Gómez, me envía un Correo que dejo aquí reproducido:

 

El origen del agua y su ciclo en la naturaleza, no es entendida por los europeos hasta finales del siglo XVII. Sin embargo, en al año 500 a. C los chinos ya conocían

Veamos que nos dice sobre el tema José C. Gómez

 

“Saludos, esta teoría se me ocurrió divagando sobre el origen del agua en la Tierra, pensando en que tipo de reacciones químicas dan lugar a moléculas de agua, observe las nubes y justo vi aparecer un avión dejando su estela de vapor en la atmosfera, pensé, desde luego, combustión de hidrocarburos, y mi búsqueda empezó en ese momento, tengo sólo formación de ingeniero técnico químico por lo que mi teoría debería ser revisada por alguien con mas conocimientos.

 

 

 

Buscando en internet posibles fuentes de hidrocarburos topé con los últimos descubrimientos del IAC, CSIC, composición de las bandas difusas interestelares, hidrocarburos policíclicos aromáticos en el espacio, es justo lo que busco, grandes moléculas de hidrógeno y carbono, además han sido capaces de sintetizarlas en un laboratorio a partir de carburo de silicio e hidrógeno simulando las condiciones en medio interestelar.

 

 

 “Siguiente paso, imaginar el sistema solar en sus inicios rodeada de una banda difusa interestelar, nube de hidrocarburos, me situé en la Tierra, en concreto cuando era una masa incandescente de digamos entre 6000-5000 ºC emitiendo radiación,  la gravedad atraería hidrocarburos obteniendo una reacción de combustión de hidrocarburos, CnHn +O2 —- H2O + CO2 muchos dirán que no había oxigeno libre, yo pienso que si producto de descomposición a elevadas temperaturas el mismo agua y dióxido de carbono actúan como combustible. 

 

 

Nacimiento del Sistema solar en movimiento

 

“La temperatura del planeta empezó a descender, permitiendo al vapor de agua generado acumularse en las capas superiores de la naciente atmosfera, por debajo de 3500 – 3000 ºC el CO2 dejó de descomponerse, la combustión se desaceleraba, el agua todavía se descomponía en las capas mas cercanas a la Tierra realimentando la reacción hasta que llegamos a 1200 ºC, y por debajo de esta temperatura es cuando debieron suceder las cosas más interesantes

 

 

Hidrocarburos como en las profundidades de la Tierra | Sociedad | EL PAÍS

 

 

“Los hidrocarburos empezaron a combustionar incompletamente, en las capas inferiores se formaba metano y gases ligeros, ascendiendo quedaban las moléculas más grandes que literalmente empezaron a llover sobre la Tierra, como una columna de destilación invertida, formando el petróleo que quedó sepultado en el manto, cabe decir que en este punto me topé con la teoría fósil, ampliamente conocida, y abiótica que desconocía, de la formación del petróleo, y esta teoría resuelve varias de las dudas  que se generan como la presencia de Helio jamás presente en ningún organismo, se formaron en una atmosfera primitiva que aún lo contenía, se encuentra metano a grandes profundidades porque fue lo primero que se formó, se ha podido reproducir la síntesis de hidrocarburos en medio interestelar, cuando esto nunca ha sucedido con la teoría abiótica de formación del petróleo a grandes profundidades y presiones.

 

 

En un tiempo, en la Tierra llovió sin parar durante dos millones de añosLa temperatura del agua del mar, las lluvias torrenciales mediterráneas y  la “chispa” de los vientos: Algunas ideas conceptuales

 

 

 “Bueno hecho el inciso continúo, llegamos a 100 ºC el vapor de agua generado y atrapado por la gravedad terrestre, empezó a condensarse se formaron nubes que desencadenaron una tremenda lluvia que formó los océanos, pero esta lluvia iba acompañada de los hidrocarburos más complejos que quedaron sin combustionar formando junto con los minerales terrestres el caldo que posteriormente dio origen a la vida, el CO2 dominaba en la atmosfera producto de la combustión y emanaciones volcánicas, los primeros organismos limpiaron la atmosfera hasta llegar a la presencia de oxígeno libre en la atmosfera y formación de organismos más complejos.

 

Los primeros seres complejos de la Tierra se reproducían ...Cuándo aparecieron los primeros organismos complejos?

 

“Aplicando esta teoría a por ejemplo Titán dada su situación, creo que se podría explicar por qué contiene hidrocarburos, la presencia de metano en Marte, ya que creo que pasó un proceso muy similar a la Tierra, donde la mayor parte del agua escapó de su atmosfera por su baja gravedad.

 

 

 

Seguimos en contacto muchas gracias por su atención, ya que las conclusiones que se desprenderían de esta teoría podrían cambiar muchas cosas en nuestro mundo.”

Amigo José C. Gómez, es bueno que sigas pensando y mejorando tus ideas que, como decía Einstein, lo mejor para la Mente es hacerla pensar y, este que nos manda, es un buen ejercicio. Aprovecho para decir a todos los visitantes del lugar (unos 15.000/20.000 diarios) que, sus ideas también pueden ser expuestas aquí. ¡Envíenlas!

Saludos.

Estructuración del Protoplasma vivo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estructuración del protoplasma de la Vida, uno de los muchos secretos que nos queda por desvelar y que la Naturaleza esconde con el celo propio de quién no quiere desvelar su intimidad más profunda y, al mismo tiempo compleja. ¿Qué podemos saber nosotros de tan maravilloso suceso?

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

 

En la Gran Nebulosa de Orión, también conocida como M42, y una de las nebulosas más famosas del cielo, podríamos encontrar ese Laboratorio natural en el que se cuecen los elementos que dan lugar a las sustancias necesarias para la aparición de la vida. Este producto de una explosión supernova, contiene todos los ingredientes necesarios para ello y, de este conglomerado de gas y polvo en el que están presentes átomos y moléculas diversas, se encuentra la fuente, no sólo de nuevas estrellas y nuevos mundos, sino que, también están ahí los materiales necesarios para el surgir de la vida.

 

Resultado de imagen de El surgir de la vida en nuestro planeta

Muchos fueron los parámetros que tuvieron que estar presentes para que, finalmente, la vida, hiciera acto de presencia en nuestro mundo, y, hasta que llegó a nuestra especie…

 

 

Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar algunos de los procesos del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma, ese sustrato material que será la base de todos los seres vivos, sin excepción.  Para poder alcanzar nuestro objetivo y así poder responder a la cuestión de la evolución y al proceso del origen de la vida, una de las fuentes que debemos conocer, es, sin duda alguna, el protoplasma y, la mejor explicación la encontré en el Libro de Alesandr Ivanovich Oparín, El Origen de la Vida que nos lo cuenta como como sigue:

 

Los primeros seres complejos de la Tierra se reproducían como las fresas | Ciencia | EL PAÍSAsí eran los primeros animales de la Tierra | OpenMindPRIMEROS SERES VIVOS QUE HABITARON EL PLANETA Y SON LA BASE DE LA EVOLUCIÓN - Issuu

Los primeros seres vivos (hasta donde sabemos), surgieron hace unos 3.800 millones de años según fósiles encontrados en las rocas más antiguas en Australia.

 

Desde el punto de vista evolutivo, los procariotas son el grupo de organismos más antiguos sobre la Tierra. Además, a pesar de su relativa simplicidad, los procariotas contemporáneos son los organismos más abundantes del mundo.

A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma, era precisamente, según ellos, la causa específica de la vida.

 

               ¿Será nuestro planeta como una gran célula viva con sus propias reglas biológicas?

Pero el estudio concreto del protoplasma desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma.

Es bien conocido que la masa básica del protoplasma es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia esencial y fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

 

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

 

 

 

Estructuración del Protoplasma vivo : Blog de Emilio Silvera V.

Estructuración del Protoplasma vivo

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma son dos sistemas distintos y contrarios.

Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

Resultado de imagen de El protoplasma vivo

 

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y …

Es de vital importancia para la formación del protoplasma que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.

 

IFCA | Instituto de Física de Cantabria Producción de dos Bosones vectoriales débiles, W+W-, en el LHC445 imágenes, fotos de stock, objetos en 3D y vectores sobre Lepton | Shutterstock

¡Y pensar que todo está formado por esas partículas infinitesimales que llamamos Quarks y Leptones!

Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

 

Seres vivos como sistemas1. Los seres vivos como organismos dinámicos.ppt

 

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

 

Dibujo20131103 structure of liquid water - predictions by laws of physicsImagen relacionada

 

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.

Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.

 

El METABOLISMO de los seres vivos [ANABOLISMO y CATABOLISMO]

 

Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma, es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.

Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

 

Levadura y su papel en el proceso de elaboración – Canalupe

Aquí podemos contemplar una célula de levadura. Se reproducen por germinación o sexualmente (…algo más interesante…). Las protuberancias de esta célula (esos círculos que parecen ojos de pescado) son las huellas de las cicatrices dejadas por las yemas al separarse. La fotografía aumenta el tamaño de la célula 12.500 veces.

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.

Un estudio de la síntesis de distintas sustancias en el protoplasma demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.

 

Resultado de imagen de sustancias y cadenas de moléculas

 

No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma.

Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.

Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.

 

http://1.bp.blogspot.com/_J5dt1YIwtGo/TJe2hXWm2cI/AAAAAAAAACk/xHOOwzNBYmE/s1600/hbonds.gif

 

Las grandes moléculas de los sistemas vivos tienen una estructura modular mantenida mediante enlaces covalentes y formada esencialmente por tan sólo seis elementos químicos: Carbono, Hidrógeno, Nitrógeno, Oxígeno, Fósforo y Azufre. Los azúcares (moléculas formadas en torno a un anillo de carbono, oxígeno e hidrógeno) son los bloques de construcción básicos de los carbohidratos. Los almidones y la celulosa están compuestos por cadenas de azúcares (glucosa), siendo utilizados los primeros como almacenamiento de energía y la celulosa como estructura de las paredes celulares vegetales. Las diferencias entre ambas moléculas son tan sutiles como pequeñas variaciones en los enlaces intermoleculares, pero el resultado es tan diferente que nuestro organismo, por ejemplo, puede digerir el almidón y no la celulosa.

Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma, y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

 

Las propiedades químicas de las sustancias integradoras del protoplasma, en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.

Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

 

http://3.bp.blogspot.com/_6bKaGGUlphs/TPAmnv4uOZI/AAAAAAAADRs/SWdMfedgJj4/s1600/londres%2Bde%2Bnoche.jpg

 

Leyendo sobre el Protoplasma y sus complejos caminos, podemos llegar a comprender que, efectivamente, todos somos uno, y, sin embargo, diferentes. ¡Ese largo camino recorrido hasta llegar aquí! No sabemos mediante qué mecanismos llegan a nuestros cerebros esas ráfagas luminosas del saber que, a unos les hace comprender ciertas cuestiones complejas y, a otros no nos llegan esos fogonazos de luz que alumbren los rincones oscuros existentes en nuestras mentes. Así, para unos es el futbol y para otros las estrellas su mayor preocupación.

 

2018 diciembre 16 : Blog de Emilio Silvera V.

 

 

Conceito de protoplasma - O que é, Definição e Significado

 

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.

 

Los compuestos inorgánicos muestran una rica variedad:

A: El Diborano cuenta con un enlace inusual
B: El cloruro de cesio tiene una estructura cristalina arquetípica. C: El Fp2 es un complejo organometálico. D: Los usos de la silicona van desde implantes mamarios hasta el Silly Putty.
E: El catalizador de Grubbs ganó el Premio Nobel 2005 por su descubridor
F: Las zeolitas encuentran un uso extensivo como tamices moleculares.

 

En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica  se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.

Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.

 

Resultado de imagen de Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo.

 

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.

 

                                                                    ¡Es tanta la diversidad de la Vida!

Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).

Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.

 

Resultado de imagen de Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo.

Estructura del protoplasma vivo

Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las  circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.

 

Resultado de imagen de Aparato de Miller que buscaba la Actividad integradora del Origen de la vida

Aparato de Miller que buscaba la Actividad integradora del Origen de la vida 

Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva. Esta gran variedad de sustancias existentes y su increíble capacidad de originar gran cantidad de reacciones químicas, pueden generar incalculables trastornos y cambios químicos. Pero debemos tener en cuenta que en el protoplasma vivo existen una serie de factores externos e internos que rigen estas transmutaciones, son factores como la presencia de conjuntos de fermentos; su relación cualitativa; la acidez del medio circundante; el potencial de oxido-reducción; las propiedades coloidales del protoplasma y su estructura, entre otros.

Todos estos fenómenos entrelazados entre sí y fuertemente relacionados con el orden regular de las reacciones químicas son propios del protoplasma vivo que desemboca en la muestra de estructuras morfológicas muy variadas. Pues bien, todo este orden sigue una dirección muy concreta, persigue un objetivo que al final desemboca en eso que llamamos vida y es verdaderamente importante darse cuenta de que, la dinámica del Universo, a través de las estrellas, de las explosiones supernovas, de las nebulosas y, finalmente, de los mundos, se vale de un conjunto de sucesos que vistos desde fuera pudieran parecer inmersos en un inmenso Caos pero que, en realidad, son simplemente pasos necesarios para que, la materia inerte, tome forma y evolucione hasta la vida que, de una u otra manera siempre se abrirá paso y estará presente en los lugares más insospechados que imaginar podamos, ya que, la vida, es algo irreversible en nuestro universo y está llamada a poblar miles de millones de mundos donde tomará las más variadas formas, unas veces conscientes y otras no, conformando un escenario de diversidad en el que, como ahora sabemos, prevalecerá aquella forma de vida que es consciente de SER.

 

Resultado de imagen de Materia inerte que evoluciona hacia la vida

                              ¿Es la materia “inerte” que evoluciona hacia la Vida?

Ahora conocemos las leyes de la Naturaleza, sabemos cómo se forman las distintas sustancias y elementos y que es, lo que de ellas puede surgir cuando se mezclan de una manera determinada y qué es lo que puede pasar cuando todo esto ocurre en el marco adecuado y en presencia de las condiciones idóneas para que surja el orden vital y su carácter perfectamente armónico que le hace estar siempre en consonancia con las condiciones del medio ambiente.

Todo esto nos lleva a comprender que es necesario e ineludible profundizar mucho más en la evolución de la materia a lo largo de la historia del mundo, del Sistema Solar, del Universo en los que, no puede caber ninguna duda, surgió, a partir de esa materia “inerte” lo que conocemos como ¡Vida! En sus miles de formas y colores (también olores y diversa y maravillosa hermosura) que, se podría decir, sin lugar a equivocarnos que, la esencia del Universo es, precisamente la Vida.

 

El surgir de la vida en nuestro planeta

Todo fue posible a que, de alguna manera que no hemos llegado a comprender (aún), la vida surgió durante toda esta serie de procesos complejos inmersos en el Caos de una Complejidad que transmutaba la materia simple en otra, cada vez más compleja y organizada que seguía unos pasos que la llevaba a conseguir estructuras impensables de un orden superior y mucho más elevado de lo que, la “simple” materia, nos haría suponer que sería posible. Claro que, todo ello, sólo y únicamente fue posible gracias a la interrelación de la materia con el medio donde se dieron las bases para hacer posible la formación de sistemas individuales de orden pluri-molecular que fue el factor determinante para la aparición de la vida y su posterior desarrollo en el planeta tal como la conocemos.

En el Universo todo es energía…la Vida, también.

Emilio Silvera V.

¿Tendrá memoria el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Memoria de las galaxias: ¿tienen recuerdos del resto del universo?El objeto más brillante que conocemos en el universo tiene otra característica de récord: ser el más vorazEl Hubble descubre el mayor grupo de estrellas supermasivas | Ciencia | EL MUNDO

Evolución de Galaxias en Cúmulos | Instituto de Astrofísica de Canarias • IAC

Claro que el Universo tiene memoria, todas estas imágenes nos hablan de lo que pasó

Preguntamos si el Universo tiene memoria… No existe ningún libro escrito que nos responda a la pregunta, lo que sabemos, son teorías obtenidas de lo que hemos podido observar, de experimentos realizados, de la experiencia de los antiguos, de todo lo que el ser humano aprendió a lo largo y ancho de su andadura por el mundo, siempre mirando hacia las estrellas que parecían decirles alguna cosa que, aún hoy, no han llegado a comprender. Sin embargo… Al estudiar los diferentes objetos cosmológicos, al seguir las pautas de las transformaciones que se producen con el paso del tiempo, al comprobar los resultados de los fenómenos que se producen… Hemos llegado a comprender que ahí, residen las huellas (memoria), de todo lo que ha venido pasando desde que el Universo comenzó su andadura.

 

El telescopio James Webb descubre cúmulos de estrellas jóvenes en el «arco de las Gemas Cósmicas» – CURIOSIDADES ASTRONÓMICAS "Divulgación de la Astronomía"

El James Webb fotografía el Universo de hace más de 13.000 millones de años. Ahí está la memoria el Universo que nos cuenta lo que pasó.

Creemos que sabemos que el Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella.

 

Las estrellas más antiguas del universo: cómo los metales revelan el pasado  oculto del cosmosWebb hace un retrato de los Pilares de la Creación lleno de estrellas -  NASA CienciaLos remanentes estelares son la clave para entender el origen y el futuro  del cosmos - Desde Abajo

Divdersas imágines que nos hablan del pasado y los remanentes estelares también

Los remanentes estelares, los restos que deja una estrella cuando “muere” (los objetos más bellos del cielo) y cuyos filamentos de plasma son estudiados por los Astrónomos que, de esta manera, llegan a comprender la evolución de la marteria a partir de los sucesos más energéticos del Universo.

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.

 

Vacío, La Nada, Eternidad, Infinito… ¡No existen! : Blog de Emilio Silvera V.

 

Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra. Al parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

 

Tendrá Memoria el Universo? : Blog de Emilio Silvera V.

Sí, el Universo tiene memoria y, lo que hay que hacer es estar atento y oír lo que trata de decirnos

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver a las estrellas.

Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permanezca y todo se transforme.

 

Nebulosa de Orión - Concepto, descubrimiento y características

La Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.

Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

 

 https://gisibanez.files.wordpress.com/2011/05/energy.jpg

 Podrán, algún día, las energías libres,  llamadas de Punto Cero, renovar  a estas otras fósiles que se agotan

Pero, el tiempo pasaba y los conocimientos avanzaban, y, se llegó a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todaqs las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.

 

Paul Dirac - WikipediaSe observan, tal vez, extrañas fluctuaciones cuánticas del espacio vacío | Ciencia Kanija 2.0

 

Allá por los años sesenta, Paul Dirac demostró que las fluctuaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.

 

 

MOTION MOUNTAIN La Montaña del MovimientoMOTION MOUNTAIN La Montaña del Movimiento

                        Paul Davis y William Unruth

 

Solo hemos visto el efecto cuántico Unruh en la ciencia ficción. Ahora el  MIT tiene un

 

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuando Paul Davis y William Unruth propusieron la hipótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetria en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

 

 

De las Placas Casimir ¿que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.

También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.

 

ONDAS GRAVITACIONALES – La Químicaweb

 

Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

 

 

El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.

 

 

Los siete colores del Arco Iris: Rojo, Naranja, Amarillo, Verde, Azul, Añil y Violeta. El arco iris es un fenómeno óptico y meteorológico que produce la aparición de un espectro de frecuencias de luz continuo en el cielo cuando los rayos del sol atraviesan pequeñas gotas de agua contenidas en la atmósfera terrestre.

Laurentino 'Nito' Cortizo - De Pecados Capitales Son siete los pecados capitales: lujuria, gula, avaricia, pereza, ira, envidia y soberbia. El papa Gregorio I asignó sentido religioso al conjunto de vicios opuestos

 

Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana.

 

CANCIÓN CON PICTOGRAMAS: Siete notas son.

 

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así:

Ut queant laxis/Resonare..

 

Los 7 días de la creación: cómo Dios creó el mundo - Biblia

 

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor

Vamos a divertirnos con los dados (2) - Escolar - ABC Color

                   Las sumas de las caras opuestas de un Dado, siempre es igual a Siete: 1+6; 2+5; 3+4

SIETE VIDAS, ESTE GATO ES UN PELIGRO - Tráiler 2 HD

También decimos que un gato tiene Siete vidas: En el mundo hispano hablante se dice que los gatos tienen siete vidas. La creencia en las siete vidas del gato tiene un origen tanto supersticioso como esotérico. No cabe duda de que la excepcional resistencia del gato, su capacidad de salir indemne ante las situaciones más complicadas.

Muchas más serían las cosas relacionadas con el Número Siete. De todas las maneras, ¡cómo somos los humanos! a todo le tenemos que sacar punta…Lo dicho, nuestra curiosidad que nos lleva en volandas hacia la Casa de la Sabiduría que, ¡está en tantos lugares!

Emilio Silvera Vázquez

¿Cuándo seremos libres?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Arriba tenéis el Mal del Mundo: Por el se mata y se traiciona, se roba, se engaña y se cometen los peores actos que el ser humano pueda imaginar. Claro que, si lo pensamos bien… Aquello del trueque en esta época no parece que fuese lo mejor.

¡Maldito Capital!

 

Con todo el boato, el drama y la solemnidad que la Iglesia católica puede  desplegar, 133 cardenales iniciaron el miércoles los rituales centenarios  para elegir a un sucesor del papa Francisco, asistiendoVisitar Sant'Ignazio di Loyola y su cúpula falsa: el "trampantojo" de Roma  — ALMA DE VIAJEIglesias y Conventos | Arte en MadridCuál es la catedral más alta del mundo? Conoce las más ostentosasVisita la Ciudad del Vaticano en RomaLos tapices de Rafael en la Capilla Sixtina, en imágenes | Fotos | Cultura  | EL PAÍS

Algunos se dan golpes en el pecho y (de palabra), protestan por el hambre en el mundo. Sin embargo, cuando vemos como viven y las riquezas que poseen… Nos hacen dudar de su pregón, no hacen lo que predican.

Hay cuestiones de las que no debemos quedar en la sombra de la ignorancia. El conocimiento de lo que pasa en el mundo es muy conveniente para poder saber, dónde estamos y qué maquinaciones se han venido y se vienen realizando para que, las criaturas del mundo “libre”, no sean tan libres y estén supeditadas a unas minorías sin escrúpulos que que lo quieren dirigir… ¡Hasta el destino Humano! está en sus manos.

A la derecha de la página del Blog, en el lugar que se denomina Enlaces, aparece: ¡Maldito Capital! – Se describe lo que es la realidad del mundo. Merece la pena que le dediquéis un rato para saber, de qué van las cosas.

 

Gobiernos corruptos, no estado fallido - Desde mi Trinchera

Si nos detenemos en la política… ¡Es para echarse a llorar!

Salid todos a la calle hoy, de alguna manera tenemos que acabar con todo esto.

Emilio Silvera Vázquez

¿Por qué tienen “lunas” los planetas y cómo y por qué...

Autor por Emilio Silvera    ~    Archivo Clasificado en El Origen de las cosas    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los satélites de Saturno | Astronomía para todos

 

A veces nos hemos preguntado por la presencia de esos pequeños mundos alrededor de los planetas y, nos ha llamado la  diversidad de características que cada uno tiene y los define pero, sobre todo, nos hemos preguntado por qué están allí. Y, en relación a los planetas mayores como Júpiter -al menos en relación a sus cuatro lunas mayores- la respuesta que se nos viene a la mente sería:

 

 

Júpiter debe poseer estas lunas por idénticas razones por las que el Sol posee sus planetas. En un esquema menor, la situación debió ser la misma. Las grandes lunas de Júpiter son casi tan grandes como planetas, o, al menos, parecen planetas pequeños y, se formarían alrededor del planeta gigante del Sistema solar como Mercurio, Venus, la Tierra y Marte lo hicieron alrededor de la estrella que nos alumbra, creciendo a partir de fragmentos de materia planetaria que orbitaban el planeta. De hecho, el propio Júpiter parece un sistema solar en miniatura. La única diferencia está en que Júpiter, al no tener la masa suficiente, no pudio llegar a ser estrella y se quedó en planeta grande.

 

Una nueva teoría explica cómo se formaron las extrañas lunas de Marte

Es posible que las pequeñas lunas del Sistema solar tengan un origen diferente. Incluimos aquí las dos lunas de Marte, Phobos y Deimos -simples trozos de roca en forma de patata, de unos quince kilómetros de diámetro-, lo mismo que docenas de pequeñas lunas que giran alrededor de Júpiter y de los demás planetas gigantes.

Quizá, todas esas pequeñas lunas no son otra cosa que que asteroides capturados y atraídos por las grandes masas de esos planetas que generan una fuerte atracción gravitatoria que los hizo apartarse de sus trayectorias normales quedando “prisioneros” del gigante. Sin embargo, pueden pasar relativamente cerca de planetas como Marte y seguir, tranquilamente su viaje hacia los confines del Universo. El que Marte los pueda “enganchar”, posiblemente sea debido a que Phobos y Deimos pasaron a la distancia precisa: Ni tan cerca como para chocar con el planeta ni tan lejos como para poder evadir la fuerza de Gravedad.

 

 

Así que, ya sólo nos queda saber el origen de la luna de la Tierra. No creo que ninguna de esas explicaciones nos sirva ni sean satisfactorias al caso. Nuestra Luna no puede ser un planeta en el “sistema solar” terrestre, porque la Tierra es demasiado pequeña para poder tener su propia familia de planetas. Y además nuestra Luna está formada por materiales muy diferentes a los de los asteroides, lo que nos dice que no se trata de una captura realizada a partir del Cinturón de Asteroides. De hecho, no se ha dado todavía ninguna explicación suficientemente fiable del origen de la Luna.

 

La luna, satélite natural de la Tierra

 

A escala cósmica, el misterio de nuestra Luna es de poco importancia, y además es un misterio provocado. Harold Urey, el padre de la ciencia lunar, estudió el problema y se rindió diciendo:

“Es más fácil simular que la Luna no está en el cielo que explicar cómo ha conseguido estar ahí”.

 

Las lunas más importantes de los planetas del sistema solar – CURIOSIDADES ASTRONÓMICAS "Divulgación de la Astronomía"

Las lunas más importantes de los planetas del Sistema Solar

Teorías son muchas y muy variadas pero… Ni la captura de la Luna solitaria y viajera por la la fuerza de gravedad de la Tierra, ni una formación binaria -la Tierra y la Luna se formaron juntas-, o, la ficción -la Luna es en su origen parte de la Tierra- que, al ser golpeada por un cuerpo de grandes dimensiones, desgajo una parte de su superficie y, junto con otra parte del propio cuerpo invasor (que continuó su camino tan ricamente), quedaron orbitando la Tierra hasta juntarse y formar la Luna.

 

La Luna se aleja de La Tierra por el efecto marea

La Luna se aleja de nosotros describiendo un círculo espiral a razón de 2,5 centímetros cada año.

Hemos podido llegar a descubrir muchas curiosidades que rodean a nuestra Luna y, los modernos telescopios y aparatos de medición nos han dicho que: La Luna se aleja de nosotros describiendo un círculo espiral a razón de 2,5 centímetros cada año y, también hemos llegado a saber que el día, se alarga un segundo cada cincuenta mil años pero, de dónde vino la Luna… ¡Nadie lo sabe!

 

Darwin tenía razón: la endogamia perjudicó a su estirpe | Ciencia | EL PAÍSLa luna se aleja cinco centímetros por año | Viajes

Uno de los diez hijos de Darwin llegó a suponer que el ritmo de separación de la Tierra y la Luna, podía dar lugar a imaginar que hace 50 millones de años, la Luna estaba a tan sólo unos 9.000 km de la Tierra en comparación con el promedio actual de 380.000 km y que el día, tenía una duración de apenas 5 horas.

Como podréis ver, siempre nos gustó especular.

 

 

Lo cierto es que hemos llegado a conocer muy bien la Luna y sabemos también, de qué materiales está formada y, en comparación con la Tierra, la Luna presenta una gran pobreza de elementos siderófilos (literalmente, adictos al hierro), que se adhieren con prontitud al hierro. Porque en comparación con la Tierra la Luna tiene una gran escacez de estos componentes; de hecho sólo posee una cuarta parte del hierro que se esperaría encontrar en cualquier material rocoso del Sistema solar.

 

File:Lunar rocks distribution lmb.jpg

El conocimiento que tenemos de la composición de la Luna se basa, por una parte, en los análisis in situ que realizaron los astronautas del programa Apolo y en los exhaustivos estudios que se han hecho de los casi 400 kilos de rocas lunares que trajeron. Hay que tener en cuenta que los astronautas tocaron únicamente seis puntos de la Luna. Por otra parte, los miles de fotografías de la Luna que se han hecho permiten extrapolar la información obtenida en esos seis muestreos para lograr una aproximación de lo que sería un estudio global, con todos los errores que esta generalización conlleva. Con todo, los geólogos han agrupado los componentes de la Luna en cuatro grandes categorías en función de su origen.

Con la excepción de los elementos implantados por el viento solar (hidrógeno, carbono, nitrógeno y gases nobles), las principales concentraciones de interés, a partir de fuentes extra-lunares, son las de los elementos denominados side-rófilos, como el hierro, el cobre, el níquel, etcétera. La mayor parte de ellos procede de cuerpos meteoríticos que han impactado sobre la superficie lunar, y no es raro que, aunque en algunos casos existan desviaciones de la norma, sus pautas de concentración en el regolito sean similares a las de los meteoritos condríticos. Las concentraciones que podrían tener mayor interés de aplicación tecnológica se encontrarían en los restos de meteoritos de grandes dimensiones.

 

 

Las concentraciones de elementos mayoritarios son, salvo para el titanio (abundante) y el sodio (muy escaso), similares a las terrestres a excepción del hierro que es sólo una cuarta parte del que encontramos en nuestro planeta. En cuanto a los elementos traza incompatibles, destacan los altos valores en tierras raras de los basaltos de tipo KREEP. Las concentraciones de elementos menores más interesantes para su utilización in situ son las del fósforo, cromo y manganeso. El cromo muestra una mayor abundancia en las rocas lunares que en sus homólogas terrestres. El manganeso en las rocas lunares llega al 0,25%.

 

Lo único cierto es que, lo mismo que le pasó a Harold Urey que estudió muy a fondo el problema, nadie ha sabido hasta el momento dar una explicación creíble del origen de la Luna que, está muy cerca de nosotros pero, sin embargo, no conocemos de dónde vino o cómo pudo llegar aquí. De todo lo demás sobre ella, hemos aprendido con el tiempo y, de la misma manera, esperémos que, algún día, alguien nos diga ¡y nos demuestre! su origen.

Emilio Silvera Vázquez