sábado, 18 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Seguimos avanzando… ¡A tientas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia – Reportaje de Prensa

¿Todas las galaxias en el centro de una esfera de agujeros negros?

 Resultado de imagen de ¿Todas las galaxias en el centro de una esfera de agujeros negros?

Una nueva investigación sugiere que lo que llamamos materia oscura podrían ser, en realidad, agujeros negros primordiales

 

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente

 

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente – NASA/JPL-Caltech/A. Kashlinsky (Goddard)

Resultado de imagen de Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo

Todas las galaxias, incluida la nuestra, podrían estar completamente rodeadas por una enorme esfera de agujeros negros. Esa es la extraordinaria conclusión de un equipo de investigadores del Centro Espacial Goddard, de la NASA, que ha sugerido la posibilidad de que la misteriosa y hasta ahora esquiva materia oscura esté hecha, en realidad, de “agujeros negros primordiales“, esto es, formados durante el primer segundo tras el Big Bang.

 

 

 

Para Alexander Kashlinsky, director de la investigación, la idea es consistente con lo que observamos en el fondo cósmico, tanto en la longitud de onda del infrarrojo como en la de los rayos X, y puede explicar también las masas inesperadamente elevadas de los dos agujeros negros en proceso de fusión observadas el año pasado, durante la primera detección de ondas gravitacionales. El estudio se acaba de publicar en The Astrophysical Journal Letters.

“Este estudio -explica el investigador- constituye un gran esfuerzo para unir toda una serie de ideas y observaciones y ver lo bien que encajan. Y resulta que encajan sorprendentemente bien. Si esto es correcto, entonces todas las galaxias, incluyendo la nuestra, serían parte de una gran esfera de agujeros negros, cada uno de ellos de aproximadamente 30 masas solares”.

 

La NASA apaga hoy el telescopio que vio por primera vez la luz de un  exoplanetaHorizontalSpitzer_esp – Madrid Deep Space Communications Complex

La NASA apaga hoy el telescopio que vio por primera vez la luz de un exoplaneta.

Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo. Los científicos reportaron una irregularidad excesiva en ese brillo, y concluyeron que probablemente se debía a la suma de los brillos de las primeras fuentes de luz que iluminaron el Universo primitivo, hace más de 13.000 millones de años. Estudios posteriores confirmaron que este brillo del fondo cósmico de infrarrojos (CIB, por sus siglas en inglés) tiene la misma e inesperada estructura irregular también en otras partes del cielo.

 

Chandra X-ray Observatory.jpg

 

En 2013, otra investigación hizo lo mismo, pero esta vez observando el brillo del fóndo cósmico en el rango de los rayos X (CXB), utilizando el telescopio espacial Chandray en la misma porción de cielo en la que se había medido el brillo en el infrarrojo. Las primeras estrellas, que emiten la mayor parte de su radiación en el espectro visible y en el ultravioleta, no contribuyen en exceso al CXB.

El resultado fue que los brillos irregulares en el fondo cósmico coincidían muy bien tanto en los rayos X como en el infrarrojo. Y el único objeto conocido capaz de ser lo suficientemente luminoso en cualquier rango de energía es un agujero negro. Los investigadores, pues, concluyeron que los agujeros negros primordiales, los que se formaron durante el Big Bang, debieron de ser muy abundantes entre las primeras estrellas, tanto como para constituir al menos una de cada cinco de las fuentes que contribuyen al CIB.

No es materia oscura, sino agujeros negros

 

Resultado de imagen de Resultado de imagen de No es la materia oscura, son los agujeros negros

 

Y aquí es donde entra en juego la materia oscura, cuya auténtica naturaleza sigue siendo uno de los problemas no resueltos más importantes de la astrofísica. Cinco veces más abundante que la materia ordinaria, de la que están hechas todas las galaxias, estrellas y planetas que podemos ver, la materia oscura no “brilla”, es decir, no emite radiación, en ninguna longitud de onda, por lo que resulta indetectable para cualquiera de nuestros instrumentos. Sabemos que está ahí, sin embargo, porque su fuerza gravitatoria obliga a la materia ordinaria (la que sí podemos ver) a moverse de formas que, sin la existencia de esa masa invisible, serían imposibles.

Hasta ahora los físicos han tratado de construir modelos teóricos que puedan explicar la materia oscura con una partícula exótica muy masiva, pero todas las pruebas llevadas a cabo para encontrar esa hipotética partícula han fracasado sin excepción.

 

Resultado de imagen de Resultado de imagen de Buscan partículas de materia oscura

Resultado de imagen de Resultado de imagen de Buscan partículas de materia oscura

Según Kashlinsky, “estos estudios están proporcionando resultados cada vez más sensibles, reduciendo lentamente el abanico de parámetros donde las partículas de materia oscura se podrían ocultar. Pero el fracaso a la hora de encontrarlas ha llevado a un renovado interés por el estudio de lo bien que los agujeros negros primordiales -agujeros negros formados en primera fracción de segundo del universo- podrían funcionar como materia oscura”.

Los físicos creen que hay varias formas en que el universo temprano, muy caliente y en rápida expansión, pudo producir agujeros negros primordiales en la primera milésima de segundo tras el Big Bang. Y cuanto más tarde se pusiera en marcha este mecanismo, mayores serían los agujeros negros “fabricados” por el Universo recién nacido. Dado que la “ventana” para crear estos agujeros negros dura apenas una fracción de segundo, los agujeros negros primordiales, según los investigadores, deberían de estar todos dentro de un estrecho rango de masas.

Ondas gravitacionales, la primera pista

 

Detección de ondas gravitacionales: ¿Cómo funciona el observatorio LIGO? |  Ciencia | EL MUNDO

Detección de ondas gravitatorias en el observatorio LIGO - ZientziaEusWhat is LIGO? | LIGO Lab | Caltech

 

El Observatorio LIGO (Laser Interferometer Gravitational-Wave Observatory), hace algún tiempo que detectó las ondas gravitacionales causadas por la fusión de dos agujeros negros a 1.300 millones de años luz de distancia. Fue la primera vez que se lograba detectar las ondas gravitacionales que había predicho Einstein hace un siglo, pero también fue la primera detección directa de un agujero negro en toda la historia de la Ciencia. La señal captada por los investigadores aportó información sobre las masas de los dos agujeros negros en proceso de fusión: 29 y 36 masas solares, respectivamente. Valores inesperadamente grandes y, sobre todo, sorprendentemente similares.

 

La mayor colisión de agujeros negros jamás detectada con ondas  gravitacionalesLa gigantesca colisión de dos agujeros negros que la ciencia no logra  explicar - BBC News Mundo

Gigantesca colisión que producen ondas  gravitacionales

“Según cuál sea el mecanismo que está actualdo -explica Kashlinsky- los agujeros negros primordiales podrían tener propiedades muy similares a las detectadas por LIGO. Si asumimos que ese es el caso, y que LIGO captó la fusión de dos agujeros negros nacidos en el universo temprano, entonces podemos estudiar las consecuencias que esto tiene en nuestra comprensión de cómo el cosmos, en última instancia, evolucionó”.

En su nuevo trabajo, Kashlinsky analiza lo que podría haber sucedido si la materia oscura realmente consiste en una gran población de agujeros negros similares a los detectados por LIGO. Esos agujeros negros, por ejemplo, distorsionaron la distribución de la masa en el universo temprano, añadiendo una pequeña fluctuación que tuvo consecuencias cientos de millones de años más tarde, cuando las primeras estrellas empezaron a formarse.

 

Resultado de imagen de La materia caliente del universo primordial

 

Durante los primeros 500 millones de años de existencia del Universo, la materia ordinaria estaba demasiado caliente como para unirse y formar las primeras estrellas. Pero la materia oscura no resultó afectada por la temperatura ya que, debido a su propia naturaleza, no depende de la radiación e interactúa fundamentalmente a través de la gravedad. Agregándose a causa de esta atracción gravitatoria, la materia oscura se agrupó primero en estructuras llamadas “mini halos”, lo que proporcionó una serie de “semillas gravitacionales” alrededor de las cuales la materia ordinaria pudo ir acumulándose. Así, el gas caliente (la materia ordinaria) se fue acumulando alredodor de los “mini halos”, dando lugar a “paquetes” de gas lo suficientemente densos como para colapsar sobre sí mismos y formar las primeras estrellas.

Kashlinsky observa que si efectivamente los agujeros negros son la materia oscurael proceso de formación estelar sucedería más rápidamente y se producirían con más facilidad las irregularidades en la luminosidad del fondo cósmico observadas en el rango de los infrarrojos por el telescopio Spitzer. Y esto sería así incluso si solo una pequeña parte de los “mini halos” estuviera produciendo estrellas.

 

Resultado de imagen de Halos de materia oscura

 

Por supuesto, los agujeros negros también capturarían una parte del gas caliente que era atraído lor los “mini halos”. Esa materia, se recalentaría según se fuera acercando a los agujeros negros y terminaría, también, por producir rayos X. Juntas, la luz infrarroja procedente de las primeras estrellas y los rayos X emitidos por la materia atraída por los agujeros negrosproducirían los mismos efectos que los científicos han observado en los brillos en CIB y el CXB.

De vez en cuando, además, alguno de estos agujeros negros primordiales pasaría lo suficientemente cerca de otro como para ser capturado por su gravedad y formar un sistema binario. Durante eones, los dos agujeros negros de esos sistemas binarios se orbitarían mutuamente, para terminar fundiéndose en uno solo, como el encontrado el año pasado por los detectores LIGO.

“Las futuras observaciones de LIGO -afirma Kashlinsky- nos dirán mucho más sobre la población de agujeros negros en el Universo, y no hará falta demasiado tiempo para saber si el escenario que propongo se sostiene o no”.

Noticias de prensa

La Ciencia es bella

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso, Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 EN PORTADA UN REPORTAJE DE EL PAÍS

Ritmo y simetría son conceptos comunes a ciencia y arte. El Nobel Frank Wilczek es el último en traspasar en su nueva obra la frontera entre ambas

 

 

Resultado de imagen de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson

Fotografías de la serie de los años veinte ‘Formas artísticas de la naturaleza’, de Karl Blossfeldt.

¿Es el mundo una obra de arte? Tal es la cuestión que el autor se propone indagar desde el título y el prólogo de este ensayo. La idea tiene su dificultad porque en principio induce a pensar en el gran artista y en sus intenciones a la hora de crear el mundo. Sin embargo, el autor no se lanza directamente en esta dirección, sino a todo un conjunto de cuestiones que se descuelgan de la pregunta inicial. Por un lado, se trata de comparar el mundo de las ideas en las que se mueve la mente del artista cuando crea y el mundo de los cuerpos físicos de la realidad en la que está inmerso. Por otro lado, se trata de enfrentar la belleza que vive el artista cuando hace arte con la belleza que vive el científico cuando hace ciencia. Aplicamos el concepto de belleza tanto a un atardecer, que es un paisaje en condiciones efímeras, como al sonido de una música, como a un pedazo de conocimiento concebido por una mente humana. En la propuesta de Wilczek destaca un concepto sobre todos los demás: la simetría. Simetría exhiben los cristales, las plantas y los animales, simetría hay también en sus maneras de cambiar, hay simetría en las obras de arte y, sobre todo, hay simetría también en las teorías científicas. La creación científica y la creación artística ofrecen una buena pista para empezar.

 

Fotografías de la serie de los años veinte 'Formas artísticas de la naturaleza', de Karl Blossfeldt.

 

 

Se equivocan los que aseguran que ciencia y arte son la misma cosa y se equivocan los que dicen que arte y ciencia nada tienen que ver. Sin embargo, enfrentar estas dos grandes formas de conocimiento interesa tanto por lo que comparten como por lo que difieren. La intersección no puede ser más fértil. La grandeza de la ciencia está en que un científico puede llegar a comprender sin necesidad de intuir y la grandeza del artista en que puede llegar a intuir sin necesidad de comprender. Un físico comprende el comportamiento cuántico de una partícula porque lo anticipa usando la ecuación de Schrödinger, pero no lo intuye porque sus sentidos no han experimentado nunca nada similar. No hay intuición cuántica porque no hay observadores cuánticos. En cambio, un artista puede distorsionar la realidad y fabricarse una metáfora para intuir algo que no tiene por qué comprender y que ni siquiera tiene por qué existir en la naturaleza. Oscar Reutersvärd, por ejemplo, fue un artista gráfico que inventó objetos en tres dimensiones que se pueden dibujar, pero que desafían la intuición porque no se pueden construir. Es la idea de los objetos imposibles que cautivó al gran físico y matemático Roger Penrose y al que tanto debe el celebérrimo Maurits Cornelius Escher, el artista que finalmente ha quedado en la historia como padre de la idea.

 

Trazos, notas, teoremas

 

Resultado de imagen de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson

 

 

Se enganchó tanto a esta cuestión que se pasó toda la vida reescribiendo el mismo libro. Se trata de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson (1860-1948). Apareció por primera vez en 1917 con 793 páginas, pero la última edición de 1942 alcanza las 1116 páginas. Aún se puede conseguir en casi todos los idiomas y aún es tema de discusión tanto por sus aciertos como por sus errores. Sus críticos le reprochan que no acabara de comprender el mecanismo de la selección natural, aunque todo el mundo reconoce su tremenda influencia en otros autores. Yo me cuento entre los seducidos y mi réplica fue el ensayo La rebelión de las formas (Tusquets, 2004). Una obra maestra que conmovió a artistas y científicos es  Gödel, Escher, Bach (Tusquets, 1987) de Douglas Hofstadter, profesor de ciencias cognitivas e hijo de un premio Nobel de física, donde se relacionan las obras del matemático autor del teorema más bello de la historia, del artista que ilustró el mundo de los objetos imposibles y del  compositor barroco que revolucionó la música. Un ensayo  más moderno es Truth and Beauty: Science and the Quest of Order (Oxford University Press, 2011) de David Orrell.

 

Resultado de imagen de El mundo como obra de arte, del premio Nobel de Física Frank Wilczek

 

El mundo como obra de arte, del premio Nobel de Física Frank Wilczek, se sumerge en estas fértiles tierras fronterizas. ¿Qué es la belleza? ¿Qué es la belleza natural de los objetos reales y qué es la belleza cultural del conocimiento humano? ¿En qué punto se dan la mano ambas concepciones? El número áureo es una proporción conocida desde la antigüedad como un canon de belleza que se deduce por un razonamiento puramente mental. Basta imponer la armonía y el equilibrio que resulta más agradable y natural a nuestros sentidos. Por ello no es raro encontrarlo en todo tipo de estructuras de diseño humano, desde la arquitectura a los muebles, pasando por un simple encendedor. Pero ¿cómo demonios se explica que ese mismo número aparezca también en las formas y estructuras vivas? ¿Será como decía Oscar Wilde que la naturaleza copia al arte? La cuestión es de una profundidad sin fondo y no se limita a los objetos naturales o culturales. La belleza no está solo en los resultados visibles de las teorías científicas y matemáticas. La belleza está también en el origen, en las hipótesis de trabajo y en la concepción del mundo que han estimulado el pensamiento de los grandes creadores científicos.

 

Resultado de imagen de La belleza de los objetos naturalesResultado de imagen de La belleza de una rosa

 

Wilczek revisa las formas más bellas del pensamiento científico y de los objetos naturales para llegar a varias conclusiones no siempre explícitas en su texto. Aún antes de acordar una definición de belleza, digamos que la belleza es un concepto frecuente en el arte, propio del arte, pero que no es necesario para hacer arte. Y aún antes de acordar una definición de lo que es comprensible, digamos que la inteligibilidad es un concepto omnipresente y propio de la ciencia, pero que no es suficiente para hacer ciencia. Sin embargo, en todos los casos elegidos por Wilczek se filtra una relación esencial entre lo que es bello y lo que es comprensible. La forma más simple de belleza es la iteración en el espacio y en el tiempo, esto es, la armonía y el ritmo. Y la forma más inmediata de lograr esta belleza es la simetría. Se diría que la belleza es una especie de no cambio dentro del cambio. ¿Qué es una ley de la naturaleza? Pues algo muy parecido: es el cambio que menos cambia. Todos los movimientos de los planetas son diferentes, pero todos obedecen a las mismas ecuaciones de las mismas leyes. Los físicos buscan siempre principios de conservación (conservación de la masa, de la carga, de la energía, de la cantidad de movimiento, del momento angular…) porque con ellos se pueden anticipar los cambios que experimenta un sistema. Wilczek no puede disimular su emoción en el capítulo que dedica a Emmy Noether, la gran matemática que tanto admiró Einstein, cuyos teoremas establecen la relación entre los principios de conservación por un lado y las propiedades de simetría del espacio y del tiempo por otro. A Einstein se le debieron saltar las lágrimas con los trabajos de Noether (lo sé porque a mí me ocurrió lo mismo cuando los vi por primera vez en la pizarra de la facultad). Después de todo, tanto la teoría especial como la teoría general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, misterioso, extraño…, ¡pero no feo! Es un principio estético como también queda claro en el capítulo que este ensayo dedica a la relatividad, sin duda la más grande y más bella teoría jamás concebida por una sola mente.

 

Fotografías de la serie de los años veinte 'Formas artísticas de la naturaleza', de Karl Blossfeldt.

 

El caso de la física cuántica, que el libro también se entretiene en saborear a través de los trabajos seminales de Einstein y Bohr, tiene un valor añadido: invita a comprender los fundamentos de la física cuántica a través de intuiciones musicales. No alcanza quizá raíces tan profundas en la fusión de los conceptos de belleza e inteligibilidad, pero sí ofrece un camino que es bastante más que una metáfora. Comprender es buscar lo que hay de común entre cosas aparentemente diferentes. Los objetos fractales, por ejemplo, ofrecen un lenguaje común para dar cuenta de la autosimilitud y la irregularidad, de nuevo el no cambio dentro del cambio, lo que afecta tanto a los hexágonos de un panal de abejas, de la estructura de un material sintético como el grafeno o a la estructura de un copo de nieve.

 

AetherWind.svg

 

El propósito de Michelson y Morley era medir la velocidad relativa a la que se mueve la Tierra con respecto al éter. Cada año, la Tierra recorre una distancia enorme en su órbita alrededor del Sol, a una velocidad de 30 km/s (más de 100.000 km/h). Se creía que la dirección del “viento del éter” con respecto a la posición de nuestra estrella variaría al medirse desde la Tierra, y así podría ser detectado. Por esta razón, y para evitar los efectos que podría provocar el Sol en el “viento” al moverse por el espacio, el experimento debería llevarse a cabo en varios momentos del año.

El libro recorre las ideas más bellas y trascendentes de la física con Galileo, Newton, Maxwell o Einstein, pero no esquiva las ideas bellas que han resultado ser falsas. La concepción geométrica de los átomos de Platón, el sistema solar de Kepler, el éter que buscaban Michel­son y Morley, etcétera. Queda claro: aunque la belleza predispone a comprender, hay que reconocer que la belleza no es una garantía de verdad. Sin embargo, Wilczek consigue seducir al lector tácita y subliminalmente en favor de una respuesta a la pregunta inicial del libro: ¿es el mundo una obra de arte? Y ésta no es otra que un sonoro y apasionado ¡sí!

 

La teoría especial y la general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, pero no feo

 

Wilczek es un físico teórico de amplísima cultura dentro y fuera de la física. Recibió el Premio Nobel de Física en 2004 por un tema aparentemente tan contradictorio como la libertad asintótica en la teoría de las interacciones fuertes, esto es, cuando dos quarks se acercan mucho entre ellos su fuerza de interacción se debilita tanto que se convierten en partículas libres. El libro equivale a un paseo a través de la historia de la física de la mano de alguien que comprende la realidad desde una concepción estética global del mundo…, como todos los grandes científicos.

 

Emilio Silvera

Descubierto el A.N. más grande y brillante del Universo primitivo

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       Descubren el cuásar más antiguo del universo

Un cuásar de 420 billones de veces más brillante que el Sol iluminó el cosmos en su infancia. 

TON 618: Este sería el objeto más grande en todo el universo conocido -  MeganoticiasRespuestas (LXXXV): ¿Es posible que nuestro universo esté dentro de un agujero  negro? – Ciencia de Sofá

Pero el agujero negro supermasivo más grande del universo es el TON 618 con 66 mil millones de masas solares, este es el monstruo de los monstruos, pero también existe otro monstruo de los monstruos, se trata de J2157 que tiene 34 000 millones de masas solares y sigue creciendo.

El agujero negro supermasivo TON 618, un gigante entre gigantes – La  Conexión Cósmica

                                          Un descomunal agujero negro rompe las reglas del Cosmos

24 FEB 2015 – El País

 

Reconstrucción de un cuásar / ESO

Hace unos 12.800 millones de años, cuando el universo aún era un niño que solo había vivido el 6% de su vida, existió un descomunal faro 420 billones de veces más luminoso que el Sol. Por aquella época el universo estaba saliendo de la edad oscura, un periodo que duró cientos de millones de años y en el que todo era tiniebla. Después aparecieron las primeras estrellas y galaxias y la luz comenzó a invadirlo todo. Poco antes de que esta etapa —conocida como reionización— acabase, se encendió ese faro cuyo origen era un descomunal agujero negro que acaba de ser descubierto y analizado por un equipo internacional de astrónomos. Los investigadores creen que este monstruo tenía unas 12.000 millones de veces más masa que el Sol, lo que le convierte en el objeto de este tipo más grande y luminoso del universo temprano.

Más información

 

Ilustración de un agujero negro. / nasa

 

 

Pero vayamos a la noticia.

El objeto descubierto es un cuásar, una masa de materia acelerada por un agujero negro supermasivo que hay en su centro. Parte de esa materia es engullida y otra escapa en un flujo de partículas que se mueven a casi la velocidad de la luz. Este proceso produce una potente luz que convierte a los cuásares en los objetos más luminosos del universo. Hasta ahora, apenas se conocían 40 con más de 12.700 millones de años.

“Este cuásar es único”, ha dicho Xue-Bing Wu, astrónomo de la Universidad de Pekín (China) y codescubridor de este objeto. “Como si fuera el faro más potente en el universo lejano, su luz nos ayudará a explorar mejor el universo temprano”, ha añadido en una nota de prensa difundida por el Gran Telescopio Binocular de Arizona, uno de los instrumentos usados para la detección.

Agujeros negros supermasivos, un túnel en el espacio
NASA/JPL-Caltech (Ilustración de Agujero Negro Supermasivo)

El cuásar tiene una masa 12.000 millones de veces mayor que el Sol

El hallazgo es importante para entender el origen de las galaxias, incluidas esas en las que se dan condiciones necesarias para la vida, como la Vía Láctea. Se piensa que todas tienen un gran agujero negro en su centro y también que en sus orígenes pudieron albergar un cuásar activo como el descubierto en el actual estudio, publicado hoy en la revista Nature.

Las dimensiones y potencia de este objeto están en los límites de lo posible. Normalmente la radiación que emiten los agujeros negros al engullir la materia que tienen alrededor limita su capacidad de seguir devorando y creciendo. Pero este cuásar parece haber estado engordando al máximo ritmo posible, alcanzando unas dimensiones sorprendentes menos de 1.000 millones de años después del Big Bang, todo un récord de velocidad en términos cosmológicos. “Que se forme un agujero negro tan grande en tan poco tiempo es difícil de explicar con la teorías actuales”, reconoce Fuyan Bian, otro de los codescubridores. Como comparación, el agujero negro supermasivo que hay en el centro de la Vía Láctea es unas 3.000 veces más pequeño.

                                                          Que tamaño tiene un agujero negro? – Blog de Divulgación Científica y  Tecnológica

Antxón Alberdi, físico experto en agujeros negros del Instituto de Astrofísica de Andalucía, destaca otra implicación del descubrimiento. La masa del agujero negro encontrada es tan alta que sugiere que los agujeros negros supermasivos en el universo temprano crecieron mucho más rápido que la galaxia anfitriona que los alberga, poniendo en entredicho los modelos de coevolución actuales”, resalta.

Bram Venemans, astrónomo del Instituto Max Planck de Alemania, resalta la utilidad de este descubrimiento. De alguna forma, los cuásares sirven para analizar la composición del universo. Cuanto más brillante es su luz, más interactúa con los elementos que hay en el espacio interestelar, incluidos los metales que se formaron en las primeras etapas del universo y que pueden desvelar nuevos detalles de cómo aparecieron las primeras estrellas tras el Big Bang, resalta el experto en otro artículo publicado en Nature. En el futuro próximo, sostiene, se podrían descubrir más objetos como este, posiblemente incluso más antiguos. “Estos gigantes”, afirma, “mostrarán nuevos detalles de cómo era el universo unos pocos cientos de millones de años después del Big Bang”.

Galaxia joven con inmensa guarderia estelar

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Leemos en el PAÏS:

“Potentes telescopios en el espacio y en tierra han permitido a los astrónomos ver un fenómeno que ya no puede darse en el cosmos actual.”

Madrid

 

Ilustración del centro galáctico GOODS-N-774 con un intenso proceso de formación estelar. / NASA/ESA/STSI

Sigue:

Una galaxia muy joven se ha convertido en una ventana entreabierta al universo remoto que muestra un proceso frenético de formación de estrellas, un fenómeno tan intenso que solo pudo suceder cuando el cosmos era más compacto, más caliente, más turbulento…. y no tan difuso como ahora. La galaxia en cuestión, GOODS-N-774 está formando 300 estrellas al año, frente a la decena que produce ahora la Vía Láctea, es mucho más pequeña, alrededor del 6% de su tamaño (6.000 años luz de diámetro frente a 100.000 de nuestra galaxia), y tiene el doble de astros. “Este proceso de formación del centro galáctico es un fenómeno único del universo primitivo; ya no vemos galaxias formándose así”, señala Erica Nelson (Universidad de Yale), líder del equipo de astrónomos autor del descubrimiento.

                                                         Universidad de Yale

El hallazgo viene a confirmar la teoría de que las galaxias elípticas más grandes se forman de dentro a fuera, generando sus núcleos centrales de intensa formación estelar durante las épocas primitivas del universo, pero los científicos nunca habían logrado presenciar el fenómeno hasta ahora, explican los investigadores del observatorio Keck (en Hawái), con cuyos telescopios han hecho el descubrimiento Nelson y sus colegas tras los estudios preliminares con el telescopio Hubble. Además, han utilizado los datos de los archivos de los telescopios espaciales Spitzer (NASA) y Herschel (Agencia Europea del Espacio, ESA), para precisar su investigación.

Astrofísica Estelar 10

                El Universo está cuajado de galaxias y estrellas que, cuando las podamos descubrir…

La luz de GOODS-N-774 que ahora captan los astrónomos se emitió hace 11.000 millones de años, cuando el universo tenía unos 3.000 millones (la edad del cosmos más precisa hasta ahora, determinada con el telescopio espacial europeo Planck es de 13.800 millones de años). La galaxia primitiva que han visto y medido estos astrónomos tiene el doble de masa que la Vía láctea y los científicos consideran que debió seguir creciendo hasta convertirse en una gigante elíptica. Es más, sospechan que la población de objetos de este tipo ha de ser numerosa pero que es muy difícil verlos porque están velados por polvo.

Noticia de prensa.

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

         ESA - Un púlsar en el interior de la burbuja de una supernovaEsta es la primera e impactante imagen de una 'mano' cósmica golpeando una  pared de gas

 

   Un Púlsar en el Interior de la Burbuja de una Supernova

 

03.06.14.- Las estrellas masivas mueren de forma dramática, explotando como espectaculares supernovas que liberan una gran cantidad de masa y energía. Estas explosiones arrastran todo el material de sus alrededores, creando una gran burbuja que se va expandiendo en el medio interestelar. En el corazón de estas burbujas se encuentra una pequeña y densa estrella de neutrones o un agujero negro, los restos de lo que en su día fue una brillante estrella.

Las burbujas formadas por las explosiones de supernova sólo brillan durante unas pocas decenas de miles de años antes de disolverse por completo, por lo que no es fácil detectar una estrella de neutrones o un agujero negro que todavía esté rodeado por su onda expansiva. Esta imagen nos muestra un buen ejemplo de este fenómeno, desvelando una estrella de neutrones en rotación y fuertemente magnetizada – lo que se conoce como un púlsar –  envuelta en su sudario cósmico, los restos de la explosión en la que se formó.

Un púlsar lento para su edadChandra: A Tour of Pulsar SXP 1062 [720p] - YouTube

Este púlsar, conocido como SXP 1062, se encuentra a las afueras de la Pequeña Nube de Magallanes, una de las galaxias satélite de nuestra Vía Láctea, y está devorando el material de la estrella que lo acompaña, lo que provoca potentes emisiones de rayos X. En el futuro esta región presentará un aspecto todavía más dramático, ya que SXP 1062 está acompañado por una estrella masiva que también terminará sus días explotando como una supernova.

Un Púlsar en el Interior de la Burbuja de una Supernova
Un Púlsar en el Interior de la Burbuja de una Supernova. Image Credit: ESA

La mayoría de los púlsares presentan un periodo de rotación increíblemente rápido, dando varias vueltas completas cada segundo. Sin embargo, al estudiar la nube de expansión que rodea a SXP 1062, los astrónomos han descubierto que este púlsar está girando demasiado lento. De hecho, es uno de los púlsares más lentos de los que se tiene constancia.

Si bien la causa de este extraño comportamiento sigue siendo un misterio, la principal hipótesis sugiere que la rotación del púlsar podría estar frenada por su potente campo magnético.

El resplandor azul en el centro de la burbuja representa las emisiones en rayos X del propio púlsar y del gas caliente que ocupa el interior de la onda expansiva. Los objetos azules que se pueden ver al fondo de la imagen son otras fuentes de rayos X situadas fuera de la galaxia.

                                                           ESA - El telescopio espacial de rayos X de la ESA, XMM-Newton, ha generado  ya más de 2000 publicaciones científicas

Esta imagen es una combinación de los datos recogidos por el telescopio espacial XMM-Newton de la ESA en la banda de los rayos X (en azul) y de las observaciones realizadas desde el Observatorio Interamericano del Cerro Tololo, en Chile. Al tomar las fotografías desde tierra se utilizaron unos filtros especiales que permiten revelar el brillo del oxígeno (representado en color verde) y el del hidrógeno (en color rojo). La composición nos muestra una región con una extensión de unos 457 años luz.

 Noticias NASA