sábado, 21 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El mundo, los pensamientos… y nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en La Mente - Filosofía    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El universo de la conciencia:  Cómo la materia se convierte en imaginación

 

                 Gerald M. Edelman y Giulio Tononi

Gerald M. Edelman dirige en la actualidad el Instituto de Neurociencias del Instituto de Investigación Scripps, situado en San Diego, California, uno de los centros privados de investigación biomédica más importantes del mundo, al que se incorporó en 1992 tras una larga y distinguida vinculación a la Rockefeller University. En 1972 recibió el Premio Nobel de Medicina, compartido con Rodney Porter, por sus contribuciones a la estructura química de los anticuerpos. Es autor de Neural Darwinism (1987), Topobiology (1988), The Remembered Present (1989) y Bright Air, Brilliant Fire (1992).

Giulio Tononi ha colaborado con G. Edelman en importantes investigaciones sobre la conciencia. Es miembro del grupo teórico y experimental del Instituto de Neurociencias y catedrático del Departamento de Psiquiatría de la Universidad de Wisconsin.

 

La consciencia es el mayor enigma de la ciencia y la filosofía

La conciencia: ¿paradoja filosófica u objeto científico?

Al asunto de la conciencia no le ha faltado atención. En el pasado fue dominio exclusivo de filósofos, pero recientemente tanto psicólogos como neurocientíficos han empezado a abordar el llamado problema cuerpo-mente o, en la sugerente expresión de Schopenhauer, «el nudo del mundo». En este capítulo hacemos una revisión sucinta de las concepciones clásicas y modernas sobre la conciencia, y señalamos varias de las posturas tomadas por filósofos, psicólogos y neurocientíficos, al tiempo que rechazamos la más desmedidas, como el dualismo o el reduccionismo extremo. Finalizamos el capítulo sugiriendo que la conciencia puede considerarse un objeto de investigación científica y no es potestad exclusiva de los filósofos.

 

Filosofía cognitiva: evolución de la conciencia

Ahí vive la conciencia pero no sabemos realmente como surge y qué la motiva

Nuestra estrategia para explicar la base neuronal de la conciencia consiste en centrarse en las propiedades más generales de la experiencia consciente, es decir, aquella que todos los estados conscientes comparte. De estas propiedades, una de las más importantes es la integración o unidad. La integración se refiere a que el sujeto de la experiencia no puede en ningún momento dividir un estado consciente en una serie de componentes independientes. Es una propiedad que está relacionada con nuestra incapacidad para hacer conscientemente dos cosas al mismo tiempo, como, por ejemplo relacionar en un papel todas las familias de partículas que conocemos mientras que, al mismo tiempo,  se mantiene una discusión sobre los agujeros negros.

 

 

Aplicando la atención hemos llegado a saber que, el electrón tiene una masa en reposo (me) de 9, 109 3897 (54) x 10-31 kg y una carga negativa de 1,602 177 33(49) x 10-19 culombios. Esa realidad, aunque vinieran los sabios físicos de un planeta habitable situado en la estrella Resplandor de una galaxia muy lejana, cuando hicieran los cálculos matemáticos y los experimentos necesarios, las cifras seguirían siendo las mismas, toda vez que, al tratarse de constantes fundamentales, ni la masa ni la carga pueden tener otra realidad distinta sea cual fuere el observador. Esto nos quiere decir que, hay realidades que nunca varían y, eso, nos puede traer alguna esperanza de que, alguna vez, podríamos conocer el Universo, tal como es.

 

Esta sí es una realidad, sin ella, el mundo no sería tal como lo conocemos.

Sin embargo, no podemos negar nuestras limitaciones tanto de percepción como intelectuales para reconocer “el mundo” tal como es. Es “nuestro mundo” que, cuando sea visitado por “otros”, pudiera ser otro mundo distinto al que nosotros percibimos y, podrían “ver” cosas que nosotros no vemos.

Vivímos en nuestra propia realidad, la que forja nuestras mentes a través de los sentidos y la experiencia. Incluso entre nosotrosm mismos, los seres de la misma especie, no percibimos de la misma manera las mismas cosas. Sí, muchos podemos coincidir en la percepción de algo, sin embargo, otros muchos diferirán de nuestra percepción y tendrán la suya propia. Esa prueba se ha realizado y la diversidad estuvo presente.

 

 

 

No, no será mada fácil despejar las incógnitas presentes en esta inmensa complejidad que llamamos Mente. Creo de manera firme que, finalmente, todo se traduce a Química y Luz. Energías de velocidades alucinantes que recorren el enmarañado entramado de neuronas y que hace posible todas y cada una de las maravillas que “realmente se producen en nosotros y que no siempre sabemos traducir ni comprender.

Es tan grande el poder de nuestra mente que nada hay tan distante que no podamos, virtualmente hablando, traer ante nosotros. Somos capaces ya de escrutar el espacio y vislumbrar los confines del universo en edades muy cercanas a su nacimiento y, merced a los microscopios, nos acercamos al universo atómico para explorar los componentes de la materia. Parece que nada podrá (con el tiempo) escapar a nuestro control, con lo que todo nuevo “mundo” se revelará a nuestro entendimiento.

 

Qué es la Mente | Definición de Mente

Nunca estamos satisfechos de los logros alcanzados (menos mal) y siempre surgirán seres especiales (Copérnico, Kepler, Galileo, Hooke, Newton…) que nos guiarán por el camino iluminado de su genio para mostrarnos la auténtica sabiduría mediante un pensamiento evolutivo que siempre dará un paso adelante, superando así el pensamiento nuevo al anterior. Pero, eso sí, esos avances han sido posible gracias a que hombres y mujeres pensaron con la lógica pero…, nunca dejaron de lado la imaginación.

 

Una historia de la gravedad: de Newton a Einstein y más allá

 

La prueba de ello la podemos encontrar en Newton y Einstein. ¿Quién puede dudar de la grandeza de Newton? La pregunta está contestada de antemano. Sin embargo, los ejemplos de la historia son muy elocuentes: Newton con su física, Leibniz con su metafísica, con sus principios filosóficos como el de la razón suficiente. Y la física ganó a la metafísica; Newton a Leibniz.

Durante mucho tiempo, espacio y tiempo se entendieron como entes absolutos, hasta que llegó Einstein con sus dos teorías de la relatividad, la especial y la general, y aunque los caminos que siguió para conseguirlos no fueron metafísicos, no podemos negar la intervención de un genio de inspiración superior que a veces, nos puede llevar a pensar que, en algún sentido, finalmente Leibniz había sido el más acertado, ya que las teorías einstenianas pueden ser clasificadas dentro de un orden del pensamiento superior.

Así, la evolución continuó su camino imparable y el espacio y el tiempo absolutos de Newton, resultaron ser menos absolutos de lo que se pensaba; eran relativos y, además, eran una misma cosa, que a partir de ahí pasó a llamarse espacio-tiempo unidos y no separados. Así fue deducido por Minkouski al leer la teoría de Einstein.

Leer más

La Física y el Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Para el topólogo, un nudo es una curva continua, cerrada y sin puntos dobles.

 

Para el topólogo, un nudo es una curva continua, cerrada y sin puntos dobles. Esta curva está situada en un espacio de tres dimensiones y se admite que pueda ser deformada, estirada, comprimida, aunque está “prohibido” hacerle cortes. Cuando se puede, a través de diversas manipulaciones, se pasa de un nudo a otro y se dice que son equivalentes. Claro que, algunos se abstraen en cuestiones con otras, al parecer, no relacionadas.

 

Mozart: Sinfonia concertante in E-flat major, K. 297b - Varios Artistas |  Deezer

 

Un viejo amigo bromeaba diciendo que el Andante en do menor de la Sinfonía Concertante de Mozart conseguía devolverle a su intimidad anímica de partida, y que por eso, en su opinión, plasmaba de forma inefable el tiempo cíclico, o mejor aún, una CTC (“curva de género de tiempo cerrada”). Y transcurridos los doce minutos que dura ese movimiento, volvíamos a escucharlo una vez más. Mientras, discutíamos sin cesar sobre el tiempo, esa abstracción de la Mente que nadie ha sabido explicar.

 

                  No es bueno perder la perspectiva

Hay un tiempo para cada cosa. Un tiempo para soñar, inconmensurable, un tiempo para vivir, siempre corto, un tiempo para filosofar, misterioso,…, y un tiempo para la ciencia, sujeto a número.

Me gustaría empezar definiendo el tiempo, pero no sé. Sesudos pensadores, como Platón y Aristóteles, lo ensayaron con brillantez. El tiempo es una imagen móvil de la eternidad. Esta imagen es eterna, pero se mueve según número, dirá Platón en el TIMEO. El tiempo es el número de movimiento según el antes y el después…El tiempo no es movimiento, sino movimiento en tanto en cuanto admite enumeración. El tiempo es una especie de número. El tiempo es obviamente aquello que se cuenta, no aquello con lo cual contamos, escribirá Aristóteles en su FÍSICA.

 

http://jovenespepe.files.wordpress.com/2010/08/ecleciastes.jpg

 Alguna vez, en simbiosis con la Naturaleza, podemos sentir como se ha parado el tiempo

Son definiciones muy sugestivas, aunque teñidas de circularidad: movimiento en el tiempo, tiempo a través del movimiento. Agustín de Hipona vio esto claramente. Célebre es asimismo su declaración: Si nemo a me quaerat, scio; si quaerenti explicari velim, nescio (CONFESIONES). En uno de los análisis más penetrantes del tema, sugirió Agustín la Mente como fuente de tiempo: En ti es, mente mía, donde mido los tiempos.

Time is what happens when nothing else happens, afirma Feynman; para a continuación advertir que toda definición del tiempo es necesariamente circular, y que lo importante no es decir qué es el tiempo, sino decir cómo se mide lo que llamamos tiempo. En su enciclopédico tratado sobre la gravitación, Misner, Thorne y Wheeler nos recuerdan de forma sencilla y profunda lo que toda medida del tiempo físico debe cumplir: Time is defined so that motion looks simple.

 

Qué es el Tiempo? | Jano 2.0

De lo que estamos seguros es de que, lo que entendemos por el tiempo, se nos escurre de entre los dedos y no lo podemos atrapar, cuando queremos darnos cuenta… ¡Se nos acaba!

Lo cierto y verdad es que nadie sabe lo que el Tiempo es. Muchos sabios, filósofos y físicos han tratado de explicarnos lo que es el tiempo, ninguno de ellos lo ha conseguido, unos con más y otros con menos fortuna nos d8ijeron lo que ellos creían que era el tiempo, pero con titubeos y poca claridad, sus explicaciones se perdían en la niebla de la ignorancia.

 

Evolución EstelarLa Misma Persona Joven Vs Viejo Retrato De Mujer Caucásica. Proceso De  Concepto De Envejecimiento. Ai Generativa Fotos, retratos, imágenes y  fotografía de archivo libres de derecho. Image 202538393

Claro que el tiempo existe, su inexorable transcurrir tiene estas cosas 

Lo he dicho alguna vez, somos conscientes de que el Tiempo existe, es la única conclusión que podamos obtener al ver como cambian las cosas, como todo se transforma y se convierte en algo distinto a lo que en un principio fue.

 

John Harrison, el genio ninguneado que inventó el GPS del siglo XVIII

 

Al no saber lo que es el Tiempo (nunca hemos podido descubrir a qué velocidad se mueve), y, para nuestro comportamiento del día a día en la Sociedad, nos inventamos los relojes y lo cuantizamos en segundos para elevarlo a medida que crecía en minutos, horas, días, mes4es, años, siglos, milenios, millones de años, ¡Eones!

Así las cosas en lo que al Tiempo se refiere, sabemos a qué hora abre el comercio, cuando entramos a trabajar o comienzan las clases en la Universidad, quedar con un amigo para ir al cine, los momentos de celebraciones festivas, cuando sucedieron los hechos históricos… Pero todo ello, basado en un Tiempo inventado, el Tiempo real es otra cosa que no conocemos, solo presentimos que está ahí.

 

Reloj de arena figura tiempo de muerte arena, guijarro, minutero, metáfora  png | PNGEgg

El Tiempo real transcurre y nos arrastra hacia ese final del que nada puede huir

El tiempo es un concepto inventado por el hombre para ordenar, primero, sus sensaciones y actos, y luego, los fenómenos. Decían los escolásticos: Tempus est ens rationis cum fundamento in re. La primera unidad natural debió ser el día, por la ciclidad conspicua de las salidas del Sol. Los grandes avances científicos y tecnológicos a lo largo de los siglos han estado vinculados a los adelantos en la precisión con que se ha ido midiendo el tiempo. Hoy disponemos de relojes que aseguran un segundo en 20 millones de años, y el paso de la femto-química a la atto-física empieza a ser una realidad.

 

 

No pocas veces nos podemos ver perdidos en la vorágine de lo que llamamos tiempo, algo tan enorme que, en realidad, no sabemos lo que es. No lo hemos llegado a comprender, y, por si fuera poco, tampoco sabemos, si en realidad existe.

 

Resultado de imagen de El Tiempo de Einstein

El tiempo antes de Einstein.

La física nació en torno al tiempo. Las regularidades en los ciclos astrales permitieron al acierto en las predicciones apoyadas en esta periodicidad, y con ello despertó sin duda la confianza del hombre en la racionalidad, inclinándole a escoger el cosmos frente al caos.

Breve historia de la medida del tiempo

 

Resultado de imagen de En la segunda mitad del siglo XIII aparecen los primeros relojes mecánicos

 

La longitud de las sombras fue uno de los primeros métodos usados para fijar las horas. En el Museo Egipcio de Berlín hay un fragmento de piedra que posiblemente sea de un reloj de sol de alrededor de 1500 a.C. Los babilonios desarrollaron los relojes de sol, y se dice que el astrónomo Anaximandro de Mileto los introdujo en Grecia en el siglo VI a.C.

 

 

En el siglo II a C, Eratóstenes, de la biblioteca de Alejandría, concibió y llevó a cabo la primera medida de las dimensiones de la Tierra de la que se tiene noticia. En el Año Internacional de la Astronomía, una de las actividades que se llevaron a cabo fue, precisamente averiguar el radio terrestre por el mismo método.

Aparte de relojes de sol, en la antigüedad se usaron también relojes de arena, de agua, cirios y lámparas de aceite graduadas.

 

Resultado de imagen de En la segunda mitad del siglo XIII aparecen los primeros relojes mecánicos

 

En la segunda mitad del siglo XIII aparecen los primeros relojes mecánicos. Su precisión era muy baja (10-20%). En el XIV se mejoran, con el invento del escape de rueda catalina, y ya se alcanzan precisiones de 20 a 30 minutos por día (1-2%). Por allá al año 1345 se empieza a dividir las horas en minutos y segundos.

 

El nacimiento de la universidad en la Edad Media

 

El tiempo físico asoma en el siglo XIV, en el Merton College Oxford y luego en la Universidad de París, con Oresme. Se representa en una línea horizontal, mientras en vertical se disponen las cualidades variables. Son los primeros gráficos de función (en este caso, función del tiempo). La cinemática celeste brinda un buen reloj a través de la segunda ley de Kepler, midiendo tiempos mediante áreas. La ley armónica de Kepler permitirá medirlos a través de longitudes. Galileo desarrolló la cinemática terrestre, y sugirió el reloj de péndulo. A Huygens debemos la técnica de medida del tiempo que ha llegado a nuestros días, y que suministró relojes más precisos y transportables mediante volantes oscilatorios acoplados a resortes de calidad.

Reloj de péndulo de Huygens

Diseño del reloj de péndulo de Huygens, 1656 (imagen de dominio público).

La importancia, no sólo científica sino económica, de disponer de relojes precisos y estables, queda reflejada en el premio ofrecido por el gobierno inglés de la reina Ana en 1714, que dispuso that a reward be settled by Parliament upon such person o persons as shall discover a more certain and practicable method of ascertainig longitude that any yet in practice. La recompensa era de 20, 000 libras para el que presentara un cronómetro capaz de determinar la longitud con error menor de 30´ de arco al término de un viaje a las Indias occidentales, equivalente a mantener el tiempo con error menor de 2 minutos tras seis semanas de viaje. Se la llevó casi medio siglo después el relojero británico John Harrison (1693-1776), con un reloj, conocido como H4, que incorporaba correcciones por variación en la temperatura, y que en un primer viaje de 81 días desde Porstmouth a Puerto Real (Jamaica) en 1761-62 se retrasó 5 s, esto es, de precisión 10⁻⁶ (10; 44).

Después se pasó a los de diapasón, de aquí a los de cuarzo, y hoy los atómicos ofrecen precisiones desde 10⁻¹² – 10⁻¹⁵ (Cs) hasta 10⁻¹⁶ (máser de H).

 

 

Una red de relojes atómicos de cesio, sincronizados mediante ondas de radio, velan actualmente por la exactitud de la hora sobre el planeta. Como señala Davies (10), ya no nos sirve como cronómetro el giro de la Tierra alrededor de su eje. Aunque durante siglos ha sido este viejo trompo un magnífico reloj de referencia, la falta de uniformidad de su giro (las mareas, por ejemplo, lo frenan incesantemente y alargan con ello el día en un par de milésimas de segundo por siglo, perceptible para los finos cronómetros actuales), y otras desviaciones estacionales, cuantitativamente similares a estos retrasos seculares, pero irregulares y de signo variable, son circunstancias que en conjunto obligan a añadir al tiempo civil un segundo intercalar cada uno o dos años (el último lo fue el 1 de enero de 1999, a las 0 horas) con el fin de remediar la asincronía entre los tiempos atómicos y los días astronómicos. El día no tiene 86 400 s justos (donde el segundo se define como la duración de 9 192 631 770 períodos de una determinada vibración de los átomos de Cs. Hoy la tecnología alcanza precisiones fabulosas: relojes que en treinta millones de años se desviarían a lo sumo en un diminuto segundo, como el NIST-F1 (Boulder, Colorado).

 

Cómo funciona el sistema de posicionamiento GPS

 

Por norma general y para mayor exactitud del sistema, dentro del campo visual de cualquier receptor GPS siempre hay por lo menos 8 satélites presentes. Cada uno de esos satélites mide 5 m de largo y pesa 860 kg . La energía eléctrica que requieren para su funcionamiento la adquieren a partir de dos paneles compuestos de celdas solares adosadas a sus costados. Están equipados con un transmisor de señales codificadas de alta frecuencia, un sistema de computación y un reloj atómico de cesio, tan exacto que solamente se atrasa un segundo cada 30 mil años.

 

 

Cómo funciona el sistema de posicionamiento GPS

La posición que ocupan los satélites en sus respectivas órbitas facilita que el receptor GPS reciba, de forma constante y simultánea, las señales de por lo menos 6 u 8 de ellos, independientemente del sitio donde nos encontremos situado. Mientras más señales capte el receptor GPS, más precisión tendrá para determinar las coordenadas donde se encuentra situado.

Incluso hay relojes de pulsera comerciales (receptores de señales de radio) con precisión de un segundo por millón de años garantizada por un reloj atómico en una lejana estación. La naturaleza de altísima precisión: la estabilidad del púlsar binario b1855+09 puede ser de unas partes en 10¹⁵ o incluso mejor.

 

¿Qué es el Tiempo? - Aristóteles, Newton, Einstein y más

 

El tiempo en Newton:

 

Principios matemáticos de la filosofía natural - Alianza Editorial

 

En los PRINCIPIA, Newton empieza con una renuncia a definir el tiempo: El tiempo, el espacio, el lugar y el movimiento son de todos bien conocidos. Y no los defino. Pero digo que el vulgo no concibe esas cantidades más que por su relación a cosas sensibles. Para evitar ciertos prejuicios que de aquí se originan, es conveniente distinguirlas en absolutas y relativas, verdaderas y aparentes, matemáticas y vulgares.

 

Resultado de imagen de El Tiempo absoluto de newton

A continuación, sin embargo, Newton se arrepiente de su primer impulso y aclara: El tiempo absoluto, verdadero y matemático, de suyo y por su propia naturaleza fluye uniformemente sin relación a nada externo y se llama también duración: el tiempo relativo, aparente y vulgar es cualquier medida sensible y externa (exacta o no uniforme) de la duración por medio del movimiento y se usa vulgarmente en lugar del tiempo verdadero: tal como la hora, el día, el mes, el año.

 

 

Sabemos del fluir del tiempo por el cambio que se produce en nuestro Universo, en el Mundo, en Nuestras Vidas. Con el paso del Tiempo las cosas cambian y nada permanece. Por eso sabemos que está ahí

¿Qué significa que el tiempo fluye? ¿Qué el tiempo “se mueve en el tiempo”? De nuevo la pescadilla mordiéndose la cola. El absolutismo del tiempo newtoniano recibió encendidas críticas. Leibniz opuso su idea de espacio y tiempos puramente relativos, el primero como un orden de coexistencia, el segundo como un orden de sucesiones de las cosas; ambos, espacio y tiempo, son phœnomena bene fundata. Los argumentos dinámicos con que Newton arropa su tesis de la naturaleza absoluta de la rotación y con ello la de un espacio absoluto, apoyo posterior para el tiempo absoluto, también hallan fuertes objeciones. Para Berkeley esas razones de Newton lo único que muestran es la importancia del giro respecto de las masas lejanas del Universo y no respecto de un espacio absoluto, que él no acepta. Ernst Mach, en la segunda mitad del XIX, insistirá decididamente en este punto de vista, y desde su positivismo acosará los absolutos newtonianos. De “medieval”, “no científico”, “metafísico”, tilda Mach a Newton: No tenemos derecho a hablar de un tiempo “absoluto”: de un tiempo independiente de todo cambio. Tal tiempo absoluto no puede medirse por comparación con ningún movimiento; por tanto no tiene valor práctico ni científico, y nadie tiene derecho a decir que sabe algo de él. Es una concepción metafísica vana.

 

El tiempo en Einstein:

El tiempo newtoniano, absoluto, el nos es familiar, tuvo que dejar paso al tiempo einsteniano, mutable y relativo, con tantos “ahora” por suceso cuantos estados de movimiento mutuo imaginemos.

El tercero de los trabajo enviados por Albert Einstein (AE) en su Annus Mirabilis de 1905 a Annalen der Physik lleva por título “Zur Elektrodynamik Bewegter Körper” (“Sobre la electrodinámica de los cuerpos en movimiento”). Junto con el quinto, titulado “Ist der Trägheit eines Körpers von seinem Energieinhalt abhängig?” (“¿Depende la inercia de un cuerpo de su contenido de energía?”), constituyen lo que hoy se llama TEORÍA ESPECIAL DE LA RELATIVIDAD.

 

           Velocidad de la luz desde la Tierra a la Luna, situada a más de 380.000 km.

Da Albert Einstein un par de razones para justificar su tercer trabajo:

  1. La insatisfacción que le produce la asimetría en la descripción maxwelliana de los fenómenos electromagnéticos: la acción entre un conductor y un imán depende solo del movimiento relativo entre ambos, pero la teoría de Maxwell distingue entre el caso de conductor en reposo y el caso de imán en reposo: a) En el primer caso el campo magnético móvil engendra un campo eléctrico, con una energía determinada, que a su vez produce corrientes en el conductor en reposo. b) En el segundo caso, no se produce ningún campo electrónico, sino una fuerza electromotriz en el conductor, sin energía asociada, que engendra una corriente como en el caso anterior.
  2. La incapacidad de la óptica y del electromagnetismo (EM) para detectar el movimiento respecto del lichtmedium, es decir, de un inercial privilegiado. Esto le sugiere que la óptica y el EM tienen las mismas ecuaciones en todos los inerciales (sistemas en los que las leyes de la mecánica de Newton son las mismas). Y AE eleva esto a un principio, que llama “Prinzip der Relativität”, y le añade un compañero, aparentemente incompatible con él: “La velocidad de la luz en vacío es siempre la misma, con independencia del estado de movimiento del cuerpo emisor.

 

¿Será ese de arriba el rayo de luz de Einstein, o, por el contrario, será un asteroide que se nos viene encima?

Siendo todavía muy joven, en 1895-1896, ya le preocupaba el EM y la luz, como recordaba en 1955: “Si persiguiéramos a la velocidad de la luz un rayo de luz, veríamos una onda independiente del tiempo. ¡Tal cosa, sin embargo, no existe! Este fue el primer experimento mental, infantil, en relación con la teoría especial de la relatividad”.

Este tercer trabajo de Einstein en 1905 no contiene ninguna referencia a otros trabajos, ni suyos ni de otros (como Lorentz o Poincaré).

Consciente de que su postulado de la constancia de la velocidad de la luz choca frontalmente con la ley galileana de adición de velocidades, Albert Einstein revisa los cimientos de la Física, empezando por definir físicamente y con sumo cuidado el concepto de Gleichzeitigkeit o simultaneidad entre sucesos. Considera un sistema inercial, para el que supone válida la geometría euclidiana para calcular distancias entre objetos estacionarios a través de sus coordenadas respecto de sus ejes cartesianos. Si A, B son dos observadores estacionarios, provistos de relojes iguales, y A (B) manda una señal luminosa a B (A), quien la devuelve sin tardanza a A (B), diremos que el reloj de A está sincronizado con el reloj de B si

t(B) – t(A) = t’(A) – t(B),

donde t(A) es el tiempo marcado por el reloj de A cuando envía la señal a B, t(B) lo que marca el reloj de B al llegarle la señal de A y reemitirla, y t’(A) la lectura del reloj de A al recibir la devolución de B.

La medida de la velocidad de la luz por Galileo. Museo Virtual de la  Ciencia del CSIC

No parece el mejor método para medir la velocidad de la luz, el empleado por Galileo. Claro que, en aquellos tiempos…¿Qué se podía hacer?

Supone Albert Einstein que esta definición no lleva a contradicciones, que es en principio posible entre cualquier par de observadores estacionarios en el inercial, y que la relación de sincronización anterior es de equivalencia: Si A está sincronizada con B, también B lo está con A, y si además B lo está con C, también A y C lo están. A esto le siguen ecuaciones que quiero obviar para no dar complejidad al trabajo.

No existe “el” presente

Pasa Albert Einstein a enunciar con precisión el principio de relatividad y el postulado de la constancia de la velocidad de la luz en el vacío:

  1. Las leyes que rigen los cambios de los sistemas físicos son las mismas en todos los inerciales.
  2. Todo rayo de luz se mueve en cualquier inercial con una misma velocidad, c, independientemente del movimiento de su fuente.

Como consecuencia, demuestra que el concepto de sincronía, y por ende de simultaneidad, es relativo, no absoluto. La noción de “presente”, “ahora” o cualquier instante determinado depende del referencial inercial.

 

Energía Taquiónica

 Algunos incluso hablaron de energía taquiónica

¿Más rápido que la luz?

¿Existen partículas que se muevan con velocidad superior a la de la luz? Sí; por ejemplo, cualquier partícula que lleve en agua, a temperatura entre 0 y 50 ºC, una velocidad ν > c / n, n = 1.3, irá más deprisa en ese medio que los fotones del espectro visible. Lo mismo ocurre con la mayoría de los rayos cósmicos que llegan a la atmósfera; son superlumínicos en relación con la velocidad de la luz en el aire. Precisamente en esta posibilidad de rebasar la velocidad de la luz en un medio reside el efecto Cherenkov.

 

Cherenkov radiaton GIF - Conseguir el mejor gif en GIFER

 

Lo que no se conocen son taquiones, o partículas que se muevan más deprisa que la luz en el vacío. Si existieran, podrían utilizarse para mandar información al pasado. Violando el orden causa-efecto. Por ello se “decreta” su inexistencia.

En fin, que la velocidad de la luz en el vacío, al menos que sepamos, es infranqueable. Es un límite impuesto por la Naturaleza al que habrá que vencer, no superándolo (que no se puede), sino mediante una artimaña física inteligente que logre burlar dicho límite.

Aparte de algún que otro añadido, el artículo (parcialmente expuesto aquí -se obviaron partes complejas), es del Físico de la Universidad Complutense D. Alberto Galindo Tixaire. Fue publicado en el Volumen 19, número 1 de la Revista Española de Física en 2005 Año Mundial de la Física

Año Mundial de la Física - EcuRed

 

En realidad, un Homenaje a Einstein por haber pasado más de un siglo desde aquel acontecimiento memorable de la Relatividad Especial en el año 1.905 y estar a punto de cumplirse otro siglo desde su relatividad general de 1905. Dos acontecimientos que marcaron el camino de la Física y la Cosmología. Precisamente ahora, se cumplen los 100 años desde que Einstein diera al mundo la segunda parte de su Teoría.

Emilio Silvera Vázquez

Un paseo por el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     AFP PHOTO/NASA/JPL-CALTECH. Es la Nebulosa Cygnus Loop en ultravioleta

Cygnus Loop (W78 fuente de radio, o Sharpless 103) es un remanente grande supernova (SNR) en la constelación de Cygnus, una nebulosa de emisión que mide casi 3 ° de ancho. Algunos arcos del bucle, conocidos colectivamente como la Nebulosa del Velo o Nebulosa Cirrus, emite luz visible.

La parte visual del Cygnus Loop es conocida como la Nebulosa del Velo, también llamada la Nebulosa Cirrus o la Nebulosa filamentosa. Varios componentes tienen nombres e identificadores separados, incluyendo el “Velo occidental” o “Escoba de bruja”, “Velo del Este”, y Triángulo de Pickering.

 

ESO: Utilizando el Atacama Large Millimeter / submillimeter Array (ALMA), los Astrónomos han descubierto que los planetas que orbitan la estrella Fomalhaut deben ser mucho más pequeños de lo que se pensaba en un principio. Fomalhaut es la estrella más brillante en la constelación de Piscis Austrinuus (El Pez Austral). El nombre de la estrella tiene su origen en el árabe y su significado es Boca de Ballena (o del pez). Durante la historia esta estrella ha tenido varios nombres. En la antigua Persia se hacían rituales para ella y era una de las cuatro estrellas reales “persas”, recibiendo el nombre de Hastorang. En la religión de Strehería, Fomalhaut es un ángel caído y el cuarto guardían de la puerta del norte. Está situada a 25 años-luz del Sol.

 

La ESO ha obtenido la imagen infrarroja más precisa de la Nebulosa Carina captada por el Telescopio de Largo Alcance del Observatorio Austral Europeo. La Nebulosa de la Quilla, también llamada Nebulosa de Carina, Nebulosa de Eta Carinae o NGC 3372, es una gran nebulosa de emisión (cuatro veces más grande que Orión) que rodea varios cúmulos abiertos de estrellas. Entre estas estrellas se encuentran Eta Carinae y HD 93129A,  dos de las estrellas más masivas y más luminosas en la Vía Láctea. La nebulosa se encuentra a una distancia estimada de entre 6 500 a 10 000 años-luz de la Tierra. Se encuentra localizada en la constelación de la Quilla (Carina). Esta nebulosa contiene diversas estrellas tipo O.

 

Resultado de imagen de Carina (la quilla), es una constelación austral austral que forma parte de la antigua constelación de Argo Navis en Observatorio

 

Carina (la quilla),  es una constelación austral austral que forma parte de la antigua constelación de Argo Navis (el navío Argo).  La Unión Astronómica Internacional  la dividió en cuatro componentes: Carina (la Quilla), Vela (la Vela), Puppis (la Popa)  y Pyxis (el compás o la Brújula).

 

Captada por el Hubble, el conjunto de galaxias Arp 273, se encuentra en la constelación de Andrómeda y tiene esta particular forma de rosa cósmica. En la imagen aparece un galaxia espiral notable, junto con otra más pequeña, y juntas tienen una forma de S. Las galaxias Arp 273están a 300 millones de años luz de nuestra Vía Láctea. Las galaxias Arp 273 están en interacción. En primer lugar, se hace un zoom en el miembro más pequeño de la pareja. Se trata de una galaxia casi de canto, que muestra claros signos de intensa formación estelar en su núcleo. Esto fue provocado tal vez, por el encuentro con la galaxia compañera anterior.

Las fuerzas de marea de la galaxia compañera más pequeña y su tirón gravitacional han causado que la pareja simule un conjunto en forma de rosa, la llamada “rosa del espacio”.

 

IAC Nos muestra la Nebulosa Reloj de Arena, fue elegida por la NASA como la Imagen Astronómica del día. Las figuras arabescas y de una belleza sin igual que se forman en el espacio con el material interestelar son fabulosas y coloridas en función del material que las conforman que, merced a la radiación que ioniza las regiones y los vientos estelares emitidos por las estrellas nuevas, conforman conjuntos que ni nuestra inmensa imaginación pueden imaginar.

Aquí la joven estrella S106 IR expulsa material a gran velocidad y perturba el gas y el polvo que la rodean, rebelándose contra su ’nube madre’. La postal captada por el Hubble tiene forma de ángel con las alas extendidas. El 16 diciembre de 2011, una de las cámaras de gran campo del telescopio espacial Hubble ha captado esta imagen de una nube de hidrógeno gigante iluminada por una brillante estrella joven. La imagen revela cuán violentas pueden llegar a ser las etapas finales del proceso de formación estelar.

Pese a los colores celestiales de esta imagen, nada ocurre tranquilamente en la región de formación estelar Sh 2-106, o S106. En ella se aloja la joven estrella S106 IR, que expulsa a gran velocidad material que altera el gas y el polvo circundantes. Esta estrella tiene una masa 15 veces superior a la del sol y está en las etapas finales de su formación; pronto, cuando entre en la fase de su evolución llamada ‘de secuencia principal’ –el equivalente a la etapa adulta de su vida estelar-, se calmará y brillará durante algunos millones de años. Vivirá menos que el Sol, ya que, su voracidad en consumir el material estelar será mucho mayor.

 

 

Aquí el Hubble nos muestra a la Nebulosa NGC 3693, situada en la constelación de Carina. Ella, presumida, nos muestra ese Joyero de relucientes y doradas estrellas formadas en un bello cúmulo. NGC 3603. Sher 25 es la estrella brillante en la posición de uno con respecto al centro de la agrupación, entre dos parches de nebulosa y con un débil anillo que lo rodea.
Ahí se encuentra Sher 25, que es una estrella supergigante azul en la constelación Carina, ubicada aproximadamente a 25.000 años luz del Sol en la región H II NGC 3603 de la galaxia de la Vía Láctea. Es una estrella de tipo espectral B1Iab con una magnitud aparente de 12,2. Su masa secuencia principal inicial se calcula en 60 veces la masa de nuestro Sol, pero una estrella de este tipo ya se han perdido una parte sustancial de esa masa. No está claro si Sher 25 ha sido a través de una fase de supergigante roja o simplemente ha evolucionado a partir de la secuencia principal, por lo que la masa actual es muy incierto.

ESO nos enseña la la Imagen de un  agujero negro en la galaxia espiral NGC 300, a una distancia récord de unos seis millones de años luz de nuestro sistema solar, absorbe la materia de una estrella que le acompaña en un ’vals infernal. Estos terribles monstruos del Espacio, situados (por lo general), en el centro galáctico, son devoradores de materia y, ni las estrellas vecinas se pueden salvar para escapar de su terrible fuerza gravitatoria que las atrae para engullirlas y convertirlas quién sabe en qué clase de materia exótica desconocida de una densidad nunca jamás vista.
Aquí el Hubble ha captada la imagen del Cluster R136 para mostrarnos un paisaje de fantasía, repleto de luminosidad en contraste con los valles de sombras y oscuridad. Junto a una región en sombra en el centro que se asemeja a la silueta de un gran árbol navideño que está cuajada de estrellas jóvenes y radiantes, azuladas que emiten cantidad inmensa de radiación ultravioleta para ionizar el material circundante al que, dependiendo de los elementos de que están formados, le saca los distintos colores.
Aquí podemos contemplar la primera imagen captada por el telescopio europeo VISTA de la Nebulosa de la Llama.  La nebulosa de la Llama, también conocida como NGC2024, es una región de gas y polvo oscurecido en el Complejo de la Nube Molecular de Orión, región de formación estelar que incluye la famosa nebulosa de la Cabeza del Caballo, situada a 1.500 años luz de distancia del Sistema Solar. Esta nebulosa es fácil de localizar dado que se encuentra muy cerca de la estrella brillante que está más a la izquierda en el cinturón de Orión: Alnitak. Esta estrella envía luz energética a la nebulosa de la Llama, lo que hace que se desprendan electrones del gas hidrógeno que reside allí. Gran parte del resplandor se produce cuando se recombinan los electrones y el hidrógeno  ionizado.
El Hubble nos muestra la imagen situada en los albores del Universo. La cámara infrarroja del telescopio espacial más famoso, ha captad0 esta imagen del universo cuando era muy joven, sólo tenía 600 millones de años después del comienzo del Tiempo, es decir, después del Big Bang. Sabemos (eso nos dicen todos los estudios realizados), que el Universo tiene ahora una edad de 13.750 millones de años y, desde aquel tiempo pasado en el que la imagen era una realidad que ahora no existe, el Hubble, nos la enseña haciendo posible que nosotros, situados a mucha distancia en el tiempo futuro de las galaxias que ahí se muestran, podamos saber cómo era entonces el Cosmos.
Desde entonces, muchas estrellas han nacido para morir y dejar sembrado el espacio interestelar de materiales complejos y de mundos que, como la Tierra, situados en la zona habitable de sus estrellas, probablemente tengan sistemas ecológicos en los que, la Vida, esté presente de mil maneras.
No importa cómo lo queramos mirar, todo el Universo es… ¡Una maravilla!

http://www.astroyciencia.com/wp-content/uploads/2011/10/nebulosa-medusa.jpgImágenes de la nebulosa Medusa captadas por el telescopio Very Large Telescope de ESO

http://1.bp.blogspot.com/-Ofs2akbn4nE/UKJdOTOw_WI/AAAAAAAAI8Y/vxhjVZPmDM8/s1600/121113_nebulosa-medusa-e-ic443_beautiful-space.jpg
Aquí dejamos este paseo por el Universo que, siendo para nosotros “infinito”, tenemos que mostrarlo por partes y también, por partes contar, lo mucho que en él está presente y los sucesos que tuvieron lugar en tan vasto espacio, que tienen presencia en este mismo momento presente y, ¿qué duda nos puede caber?, tendrán lugar en el tiempo por venir.
¡Qué bello es el Universo! ¡Cuántas maravillas contiene! ¿Lo conoceremos alguna vez… del todo? ¿Tendrá algún compañero?
Emilio Silvera Vázquez

¡Nuevos Mundos! ¿Nuevas formas de vida??

Autor por Emilio Silvera    ~    Archivo Clasificado en Nuevos mundos    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El metano y la zona habitable alrededor de una estrella - EurekaUn vecindario lleno de planetas: 59 nuevos mundos en las cercanías del  Sistema Solar | Ciencia | EL PAÍS

 

 

Las noticias sobre nuevos mundos nos llegan en tropel (ya pasan de los 5.000), y, en alguno de ellos, algún día, nos toparemos con la Vida. Poco a poco vamos construyendo aparatos nuevos con nuevas y sofisticadas técnicas que nos permiten localizar mucho mejor planetas del tipo Tierra que, al ser tan pequeños, son difíciles de localizar dado que el mismo resplandor de la estrella que los acoge dificulta su localización.

 

Representación del planeta UCF-1.01. | NASA

 

Los de la NASA parece que han encontrado un planeta que es algo mayor que Marte y un poco más pequeño que Venus. Si finalmente se confirma, será el planeta tipo Tierra más cercano a nuestro entorno, ya que, sólo está a 33 años-luz que en el contexto espacial es igual que decir a la vuelta de la esquina. Le Han llamado UCF-1.01. Está orbitando una estrella enana roja a una distancia menor que la de Mercurio al Sol, y, la temperatura en la superficie sería de unos 600 ºC.

 

/pf/resources/images/abc-placeholder.png?d=2221

 

Kepler, la sonda espacial, ha encontrado el planeta más parecido a la Tierra encontrado hasta el momento. Es 1.5 veces  (50%) más grande que nuestro planeta. Le han denominado KOI 172.02 y situado en la zona habitable de una estrella similar a nuestro Sol, deja abierta la posibilidad de que allí esté presente el agua líquida y también existan grandes océanos.

El exoplaneta, situado en una zona habitable -ni demasiado fría ni demasiado caliente- en la que podría haber agua y una atmósfera estable, forma parte de un sistema de seis mundos que gira alrededor de la estrella HD 40307.

 

☆ HD 40307 | Stellar Catalog

La estrella HD 40307 y sus planetas acompañantes

 

El exoplaneta, situado en una zona habitable -ni demasiado fría ni demasiado caliente- en la que podría haber agua y una atmósfera estable. A sólo 42 años luz de distancia de nuestro mundo. Parece que puede tener, además de agua líquida, una atmósfera estable. Está  formando parte de un sistema de seis mundos que gira alrededor de la estrella HD 40307.

 

Un grupo de astrónomos del Centro de Astrofísica Harvard-Smithsonian y del Instituto de Astronomía Max Planck ha anunciado el descubrimiento de otro planeta que tiene todas las papeletas para ser habitable a «solo» 36 años luz de la Tierra (345,6 billones de km.). Se trata de HD85512b y gira alrededor de una enana naranja en la constelación de Vela. El nuevo mundo, afirman los investigadores, se encuentra a la distancia perfecta de su estrella y tiene la masa adecuada para ser incluído en la selecta lista de los planetas más parecidos a la Tierra encontrados hasta la fecha.

 

Alfa Centauri. ¿Qué esconde el sistema estelar más cercano a nosotros?

 

Cada vez más cerca. El nuevo mundo que ha sido descubierto tiene poco más de 1 masa terrestre y está en nuestra vecindad, es decir, en el sistema Alfa Centauri a 4,3 años-luz de nosotros. Es el más cercano de los más de 800 catalogados desde 1995. Parece que la vida allí no sería factible, toda vez que la temperatura en la superficie sería extrema al encontrarse aquel planeta mucho más cerca de su estrella que lo está Mercurio del Sol.
Cómo viajar a Alfa Centauri - Eureka
Hoy un sueño, y, mañana…. ¡Ya veremos!
Es curioso como al decir que Alfa Centauri está a sólo 4,3 años-luz de nosotros, podemos imaginar que está a nuestro alcance y, sin embargo, con nuestra actual tecnología…,  ¡nos queda tan lejos! Son tantos los kilómetros que nos separan del sistema Alfa Centauri que, la nave más veloz que hoy en día pudiéramos construir (unos 60.000 Km/h), tardaría 74.000 años en llegar a ese nuevo mundo. Sin embargo, no debemos dejar que el desaliento se apodere de nosotros, toda vez que, nuestra imaginación está fresca y la inventiva de la Mente Humana es… ¿Ilimitada?
Qué son los agujeros de gusano?
Así tardaríamos mucho menos en llegar al planeta de Próxima Centauri que es prometedor.
https://youtu.be/o_fR-q6h-rM
Los agujeros de gusano, también conocidos como puentes de Einstein-Rosen, son una solución hipotética a las ecuaciones de la relatividad general de Einstein que podrían conectar dos puntos del espacio-tiempo, creando una especie de túnel espacial que permitiría viajes más rápidos que la velocidad de la luz, según el video de YouTube.
Burlar la Velocidad de la Luz : Blog de Emilio Silvera V.
Es posible que algún día (lejos en el futuro), podamos burlar a la velocidad de la luz (que no vencerla).
Acercarse a la velocidad de la luz… trae consecuencias : Blog de Emilio  Silvera V.
¿Cómo sería eso posible? Está por ver
¿Quién sabe que caminos podremos encontrar en el futuro para burlar la velocidad de la luz? Como la relatividad especial nos dice que nunca podremos sobrepasar ese límite impuesto por la Naturaleza y que nunca podríamos superar los 299.792.458 metros por segundo que puede recorrer la Luz, esperamos que con el tiempo y el avance en el conocimiento de nuevas técnicas y de la Naturaleza misma, llegaremos a descubrir otros caminos por los que desplazarnos por el Espacio “infinito” para nosotros si consideramos las posibilidades físicas con las que podemos contar y, siendo así (que lo es), tendremos que echar mano de nuestras condiciones mentales: La fuente que genera ideas de impredecible alcance y que nos llevará en el futuro hacia esos nuevos mundos que tratamos de descubrir.
¡La búsqueda continúa!
 10 libros de viajes en el tiempo que te transportarán a mundos lejanos
https://youtu.be/HMZWpBYF0Cw
Dese hace mucho tiempo ya que soñamos con viajar a otros mundos, la Tierra se nos está quedan quedando pequeña. Sin embargo, pasa lo de siempre, vamos por delante de lo que en realidad podemos, nos pasa con con la Inteligencia Artificial, con las Teorías de la Física, con las imaginaciones de lo que existe en el Universo (“materia y energía oscura -por ejemplo-), y, así vamos caminando dando palos de ciego, tanteando el piso por el que caminamos y no siempre somos precavidos y evitamos caer por el abismo.
Emilio Silvera Vázquez
 

¡La Pintura! El primer síntoma del lenguaje callado e inteligente

Autor por Emilio Silvera    ~    Archivo Clasificado en El Arte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Heredero del Impresionismo, Van Gogh fue capaz de crear un estilo muy personal, más allá de la luz y el color. Su obra es un claro ejemplo de cómo la pintura puede expresar las emociones y tensiones humanas. Este gran maestro de la pintura tuvo una vida llena de fracasos. Su carácter inestable se iba alimentando de todo aquello que el pintor no conseguía: trabajos frustrados, desamores, ataques epilépticos, un acercamiento a la religión sin éxito, etc. Todo esto, unido a su fracaso como pintor, aumentó su soledad y desánimo.

¿Si supiera lo que ahora pagan por sus cuadros!

 

File:Auguste Renoir - Le Déjeuner des canotiers.jpg

                              Almuerzo de Remeros de Auguste Renoir

 

 

Rechazada por el jurado del Salón de 1863, esta obra es expuesta por Manet con el título Le Bain (El Baño) en el “Salón de los Rechazados” autorizado ese año por Napoleón III. Se convirtió en la principal atracción, objeto de burlas y fuente de escándalo.

No obstante, Manet reivindica en el Desayuno sobre la hierba el legado de los maestros antiguos y se inspira en dos obras del Louvre. El Concierto campestre de Tiziano, entonces atribuido a Giorgione, le brinda el tema, mientras que la disposición del grupo central se inspira en un grabado según Rafael: El juicio de Paris. Pero en el Desayuno sobre la hierba, la presencia de una mujer desnuda en medio de hombres vestidos no está justificada por ningún pretexto mitológico o alegórico. La modernidad de los personajes hace obscena, a los ojos de sus contemporáneos, esta escena casi irreal. Maneta se divierte además llamando su cuadro “Parte cuadrada”.

 

Las señoritas de Avignon" de Picasso es el "fundador del arte" de siglo XX | La República EC

Las señoritas de Avignon” de Picasso

Andre Salmon, ya en 1912, suscitó la idea de que la pintura de vanguardia nació en Francia en 1907 con la creación del revolucionario cuadro de Picasso Las señoritas de Aviñón, considerado además como la obra germinal del lenguaje cubista. Esta rotunda tesis, avalada por otros comentaristas, no ha sido puesta en duda por la historiografía hasta el presente.

De hecho, son los experimentos que llevaron a cabo Pablo Picasso y Georges Braque a partir de ese momento los que configuraron el horizonte estético del cubismo, decididamente afianzado después de 1910 como corriente de vanguardia, que se hizo internacional en apenas dos años. En origen, la composición de las Señoritas está relacionada con las últimas Bañistas de Cézanne y con obras de él derivadas, como las de Matisse Alegría de vivir y Lujo, calma y voluptuosidad, a la que trata de oponerse conceptualmente; pero sobre todo está influida directamente por la estética antiacadémica de la escultura arcaica griega, egipcia, ibérica y negro-africana. Durante 6 meses el pintor estuvo haciendo dibujos previos, cada vez más simplificados, eliminando lo anecdótico para quedarse únicamente con el espacio y las figuras; después lo transformó con violencia, y al fin lo dejó inacabado. Pero de todas formas, con él revolucionó el modo de concebir la pintura, aunque de momento no fuera entendido.

 

File:Grant DeVolson Wood - American Gothic.jpg

 

La pintura norteamericana de principios de siglo se halla, como el país mismo, en un complaciente aislacionismo que le aleja de las corrientes culturales de vanguardia que se desarrollan en Europa. Al mismo tiempo se alienta la reivindicación de un arte propio y genuinamente americano, definido precisamente por su alejamiento de las tendencias europeas.

Se desarrolla así el llamado Regionalismo norteamericano, un movimiento liderado  por Thomas Hart Benton, al que se unen artistas como Andrew Wyeth, John Stuart Curry, Charles Burthfield, Ben Shan y el artista que hoy nos ocupa y que será uno de sus principales representantes, Grant Word. También hay quien incluye a Edward Hooper dentro del grupo, y sí es cierto que Hooper rechaza la influencia de vanguardia y apuesta por un arte propiamente americano, basado en la reproducción de los rincones de la América más genuina, pero el arte de Hooper es menos rural y más intimista que el de los regionalistas.

 

File:Claude Monet, Impression, soleil levant, 1872.jpg

Louis Leroy en Charivari, 1874, nos decía:

“¿Qué representa esta tela? Veamos el catálogo. Impresión, sol naciente. Impresión, estoy seguro; puesto que me siento impresionado, debe haber cierta impresión ahí dentro… ¡Y cuánta libertad, cuánta soltura en la realización! “

Impresión Sol Naciente

“Impresión, sol naciente”, realizada por Claude Monet en 1872, es una obra fundacional del Impresionismo francés. Esta pintura al óleo sobre lienzo se presentó por primera vez en 1874, en la Primera Exposición Impresionista de París. La crítica de Louis Leroy, al referirse a la obra de forma peyorativa, acabó bautizando el nuevo movimiento artístico. La pintura representa el puerto de Le Havre, ciudad natal del artista, al amanecer. Se conserva en el Musée Marmottan Monet, en París, y está considerada un icono del arte moderno. Enmarcada en la segunda mitad del siglo XIX, responde al estilo impresionista, caracterizado por una nueva sensibilidad visual, centrada en la luz, el color y la atmósfera. El estado de conservación es excelente, lo que permite seguir apreciando su vibrante ejecución.”

Esta lámina nos muestra una imagen de la deslumbrante pintura “Impresión, sol naciente” (Impresión, soleil levant en francés) de Claude Monet. Este cuadro, se conserva en el Museo Marmottan de Paris. En 1985 fue robado y recuperado en 1990.

“Probablemente de forma inconsciente, estaba pintando la soledad de una gran ciudad”, dijo el propio Hopper de esta obra. Efectivamente, “Nighthawks” no es sólo la obra más famosa y reproducida del artista, sino que se ha convertido, por derecho propio, en el símbolo de la soledad de la metrópolis contemporánea y en uno de los iconos del Arte del siglo XX.

De esta pintura se han hecho multitud de interpretaciones y consideraciones subjetivas, demostrando así la terrible emoción que ésta provoca en el observador. La visión de estas cuatro figuras anónimas (misteriosamente, Hopper llamó a esta obra una pintura “de tres personajes”) en el interior de un sobreiluminado bar en la noche de una oscura jungla de asfalto consigue producir una sensación de soledad inevitable. A destacar que, al no representar la puerta de acceso al local, Hopper ha convertido el establecimiento en una prisión de vidrio en la que nadie puede entrar –ni salir.

 

 

Lo que sin palabras nos pueden decir, los Pintores, los Poetas y los Músicos… A mi me impresiona mucho que, se puedan expresar pensamientos tan profundos y que, de alguna manera inexplicable, lleguen poder tocarnos el Alma, elevar nuestros sentimientos y, hacernos ver que, la Humanidad es muy, muy grande.
Bueno, amigos míos, no siempre vamos a conversar sobre las estrellas del cielo, tan lejanas ellas. De vez en cuendo, debemos poner los pies en el suelo y, mirando a nuestro alrededor comprobar que, también, aquí abajo, existe una inmensa belleza.
Emilio Silvera Vázquez
Posdata:
Me gustaría haberos contado la historia que yace oculta, detrás de cada una de esas pinturas pero… En tora ocasión será.
Pinturas rupestres en clave climáticaLas mujeres neandertales también cazaban y hacían pinturas rupestres | LiteraturaPinturas Rupestres
Pero lo cierto es que…. ¡Aquí comenzó todo!
Las pinturas rupestres, también conocidas como pictografías, son manifestaciones artísticas realizadas sobre rocas, principalmente en cuevas o abrigos rocosos, mediante el uso de pigmentos minerales. Estas pinturas, que forman parte del patrimonio arqueológico, ofrecen una ventana a la vida y la cosmovisión de los primeros humanos.