Mar
8
La mujer en la Ciencia ha tenido su importancia
por Emilio Silvera ~
Clasificado en El Origen de las cosas ~
Comments (1)

Marie Curie
La Asamblea general de las Naciones Unidas, ha declarado el día 8 de Marzo de 2.011 el Año Internacional de la Química, coincidiendo con el centenario de la concesión del Premio Nobel otorgado a Marie Curie –Marja Sklodowska- por sus aportes a la Química.
Sin embargo, se aprovechó el tirón mediático de esta célebre científica, y, el valor simbólico de su buena imagen popular, no olvidemos que es poseedora de dos Premios Nobel, por una de las personas más importes que, dedicadas a la Ciencia, se puede decir que, pasó y dedicó su vida a la investigación, haciendo posible, de alguna manera, que hoy, nosotros podamos vivir mejor gracias a sus contribuciones científicas.
Así que, los responsables, creyeron conveniente, aprovechar aquel momento para celebrar también, en el Año 2.011, el Año Internacional de la Mujer Científica, lo que, por otra parte, es muy de justicia, ya que, queramos o no, en éste (como en otros ámbitos) tenemos a la mujer un poco postergadas y, ya va siendo hora de que se le reconozcan los mismos (en algunos casos más) méritos que a las hombres.

Cuando publiqué este trabajo por vez primera, decía:
“En ese año Internacional de la mujer científica, entre otros muchos, se publicó éste reportaje de Laura Martínez Alarcón queriendo hacerles un homenaje a unas cuantas mujeres científicas como representación de todas las demás.”
Laura Martínez
Cuando hablamos de ciencia, ¿a cuántas mujeres podríamos citar? Seguro que a nuestra memoria vendrá inmediatamente el nombre de Marie Curie, pero ¿y después? Siempre pensamos en Albert Einstein o Charles Darwin cuando de ciencia se trata; sin embargo, seguimos ignorando los logros de muchas mujeres que, a lo largo de la historia, han dedicado su vida a estos menesteres.
Hoy, que estamos celebrando el Día Internacional de la Mujer, queremos recordar a 10 mujeres que se han destacado en la ciencia.
1. Hipatia de Alejandría
Hipatia de Alejandría, matemática, astrónoma, filósofa neoplatónica y símbolo de la sabiduría antigua.
Fue la primera mujer en realizar una contribución fundamental al desarrollo de las matemáticas, una verdadera precursora y, hasta mártir, como mujer de ciencias. Nació en el año 370 D. C. en Alejandría y falleció en el 416, cuando sus trabajos en filosofía, física y astronomía fueron considerados como una herejía por un amplio grupo de cristianos que la asesinaron brutalmente. Su imagen se considera un símbolo de la defensa de las ciencias contra la irracionalidad y la estupidez de las embestidas religiosas, siempre carentes del más mínimo sentido. En 2009, el director de cine Alejandro Amenábar realizó la película “Ágora” en memoria de Hipatia.
2. Sophie Germain.

Fue una matemática autodidacta, nacida en París en las últimas décadas del Siglo de las Luces (1776-1831). Sus primeros trabajos en Teoría de Números los conocemos a través de su correspondencia con C. F. Gauss, con el que mantenía oculta su identidad bajo el pseudónimo de Monsieur Le Blanc. El teorema que lleva su nombre fue el resultado más importante desde 1753 hasta 1840 para demostrar el último teorema de Fermat. Posteriormente, sus investigaciones se orientaron a la teoría de la elasticidad y en 1816 consiguió el Premio Extraordinario de las Ciencias Matemáticas que la Academia de Ciencias de París otorgaba al mejor estudio que explicara mediante una teoría matemática el comportamiento de las superficies elásticas. En los últimos años de su corta vida, escribió un ensayo sobre filosofía de la ciencia que Augusto Comte citó y elogió en su obra.
3. Augusta Ada Byron (Condesa de Lovelace).
![]()
Mejor conocida como Ada Lovelace fue una brillante matemática inglesa. Nació en Londres en el año 1815 y falleció en 1852. Absolutamente adelantada a su tiempo, podría decirse que fue la primera científica de la computación de la historia, la primera programadora del mundo. Ella descubrió que mediante una serie de símbolos y normas matemáticas era posible calcular una importante serie de números, ella previó las capacidades que una máquina (más tarde sería la computadora) tenía para el desarrollo de los cálculos numéricos. Como curiosidad y por si su apellido te suena, ella fue la hija de uno de los poetas más grandes en la historia de la literatura universal, por supuesto: el magnífico Lord Byron.
4. Amalie Emmy Noether.


Podría considerarse como la mujer más importante en la historia de las matemáticas y, de hecho, así la consideraba Albert Einstein. Nació en Erlangen (Alemania), en 1882 y falleció en 1935 en Estados Unidos, luego de ser expulsada por los nazis unos años antes. La figura de Noether ocupa un imprescindible lugar en el ámbito de las matemáticas, especialmente en la física teórica y el álgebra abstracta, con grandes avances en cuanto a las teorías de anillos, grupos y campos. A lo largo de su vida realizó unas 40 publicaciones realmente ejemplares.
5. Lise Meitner.


Lise Meitner and Otto Hahn at the Kaiser Wilhelm Institute for Chemistry in Berlin (1928Lise Meitner and Otto Hahn at the Kaiser Wilhelm Institute for Chemistry in Berlin 1928.)
Nació en la Viena del Imperio Austrohúngaro, hoy Austria, en 1878 y falleció en 1968. Fue una extraordinaria física con un amplio desarrollo en el campo de la radioactividad y la física nuclear. Aunque fue parte fundamental del equipo que descubrió la fisión nuclear, solo su colega Otto Hahn obtuvo el reconocimiento. Años más tarde, el meitnerio (elemento químico de valor atómico 109) fue nombrado así en su honor.
6. Marie Curie.


La radiactividad. En 1897 Marie Curie se dispuso a preparar su tesis doctoral. El tema escogido era tan apasionante como difícil: las radiaciones de …
Química y física de origen polaco, Marie Salomea Skodowska Curie dedicó su vida entera a la radioactividad y fue la máxima pionera en este ámbito. Ella nació en 1867 y murió en 1934; es la primera persona en conseguir dos premios Nóbel para los cuales literalmente dio su vida, de hecho, hoy, muchas décadas después de su muerte, sus papeles son tan radiactivos que no pueden manejarse sin un equipo especial. Su legado y sus conocimientos en física y química impulsaron grandes avances.
7. Barbara McClintock.
Barbara McClintock in the laboratory at Cold Spring Harbor, New York, March 26,
Nació en Hartford (Estados Unidos) en 1902 y falleció en 1992, dejando un importante descubrimiento en el campo de la genética. Ella se especializó en la citogenética y obtuvo un doctorado en botánica en 1927. A pesar de que durante mucho tiempo, injustamente sus trabajos no fueron tomados en cuenta, 30 años más tarde se le otorgó el premio Nóbel por su excepcional e increíblemente adelantada investigación para su época: teoría de los genes saltarines, revelando el hecho de que los genes eran capaces de saltar entre diferentes cromosomas. Hoy, este es un concepto esencial en genética.
8. Jocelyn Bell.
Se trata de la astrofísica británica que descubrió la primera radioseñal de un púlsar. Nació en el año 1943, en Belfast (Irlanda del Norte) y su descubrimiento fue parte de su propia tesis. Sin embargo, el reconocimiento sobre este hallazgo fue para Antony Hewish, su tutor, a quien se le otorgó el premio Nobel de Física en 1974. Este injusto acto, que aunque como ya vimos no es nada nuevo, fue cuestionado durante años, siendo hasta hoy un tema de controversia.
9. Rosalind Franklin.
Nació en 1920 en Londres y falleció en 1958. Fue biofísica y cristalógrafa, y tuvo una participación crucial en la comprensión de la estructura del ADN, ámbito en el que dejó grandes contribuciones. Como suele ocurrir en la comunidad científica, uno de sus más grandes trabajos, la observación de la estructura del ADN mediante imágenes tomadas con rayos X, no le fue reconocido. Por el contrario, el crédito y el premio Nóbel en Medicina se lo llevaron Watson (quien más tarde fue cuestionado por sus polémicas declaraciones racistas y homofóbicas) y Crick.
10. Jane Goodall.

Nació en Londres, Inglaterra, en el año 1934. Ha dedicado toda su vida al estudio de los chimpancés. Jane ha realizado profundas y fructíferas investigaciones científicas sobre el comportamiento, el uso de herramientas y los modos de vida de estos primates. En 2003, sus trabajos fueron reconocidos por la comunidad científica con el Premio Príncipe de Asturias de Investigación Científica y Técnica.

Es una verdadera pena que, la verdadera contribución de la mujer científica a la Ciencia, sea poco conocida. Mujeres que han destacado en muchas de las disciplinas científicas que son importantes para la Humanidad, son totalmente desconocidas, y, el caso de la Curie, es excepcional.
Es justo que consideremos llegado el momento de otorgar a las mujeres de la Ciencia la categoría que, por méritos propios, se han ganado a lo largo de la Historia, y, no olvidemos que en la actualidad, no son pocas mujeres las que están al frente de la vanguardia en muchas de esas disciplinas que son punteras en el mundo, y, la Química o la Astronomía, pueden ser un buen ejemplo de ello. La Astronomía en España está al frente de grandes científicas Astrofísicas como Montserrat Villar o Ana Ulla entre otras muchas, y, también en otras disciplinas destacan mujeres de nuestro tiempo que han llegado a la Física, la Medicina y otras áreas de la Ciencia con una fuerza inusitada.
![]()
Lynn Margulis nació en 1938 en la ciudad de Chicago. Inició sus estudios de secundaria en el instituto público Hyde Park a lado de South Park y cuando fue trasladada por sus padres a la elitista Escuela Laboratorio de la Universidad de Chicago, regresó por su cuenta al instituto con sus antiguos amigos, lugar al que ella pensó que pertenecía. De esa época recuerda con agrado a su profesora de español, la señora Kniazza.
A los 16 años fue aceptada en el programa de adelantados de la Universidad de Chicago donde se licenció a los 20 años, adquiriendo según ella «un título, un marido (Carl Sagan) y un más duradero escepticismo crítico». Margulis diría de su paso por la Universidad de Chicago:
Allí la ciencia facilitaba el planteamiento de las cuestiones profundas en las que la filosofía y la ciencia se unen: ¿Qué somos? ¿De qué estamos hechos nosotros y el universo? ¿De dónde venimos? ¿Cómo funcionamos? No dudo de que debo la elección de una carrera científica a la genialidad de esta educación «idiosincrásica».
En 1958 continuó su formación en la Universidad de Wisconsin como alumna de un máster y profesora ayudante. Estudió biología celular y genética: genética general y genética de poblaciones. De su profesor de estas dos últimas, James F. Crow, diría:
“Cambió mi vida. Cuando dejé la Universidad de Chicago sabía que quería estudiar genética, pero después de las clases de Crow supe que sólo quería estudiar genética”.
Desde un principio se sintió atraída por el mundo de las bacterias, que en aquel entonces ella indica que eran consideradas solo en su dimensión de gérmenes de carácter patógeno y sin interés en la esfera del evolucionismo. Margulis investigó en trabajos ignorados y olvidados para apoyar su primera intuición sobre la importancia del mundo microbiano en la evolución. Ella misma, en sus diferentes trabajos, nos guía en lo que fue su investigación y los antecedentes de sus aportaciones. Siempre ha mostrado una especial disposición a valorar estos antecedentes, desde su recuerdo hacia la señora Kniazza, su profesora de español en el instituto; pasando por el recuerdo de sus profesores de universidad y lo que para ella significaron; y terminando por una extensa referencia de los trabajos de aquellos científicos que ella rescató del olvido para apoyar su pensamiento evolucionista.
Investidura de Margulis como doctora honoris causa por la UAM, junto a Peter David Townsend(izda.), el rector Raúl Villar y Eugenio Morales Agacino.
Se interesó por los trabajos de Ruth Sager, Francis Ryan y Gino Pontecorvo. Estos trabajos la llevan a la que ella considera obra maestra: The Cell in Developement and Heredity (La célula en el desarrollo y la herencia), escrita por E. B. Wilson en 1928. Toda esta obra relacionada con las bacterias está relacionada a su vez con los trabajos de L. E. Wallin, Konstantin Mereschkowski y A. S. Famintsyn, en los que se plantea la hipótesis de que las partes no nucleadas de las células eucariotas eran formas evolucionadas de otras bacterias de vida libre. Desde entonces su trabajo se ha centrado en desarrollar esa hipótesis que la condujo a formular su teoría de la endosimbiosis seriada, y posteriormente su visión del papel de la simbiogénesis en la evolución.
Sus aportaciones a la biología y el evolucionismo son múltiples: ha descrito paso a paso y con concreción el origen de las células eucariotas (la SET, que considera su mejor trabajo); junto a K. V. Schwartz ha clasificado la vida en la tierra en cinco reinos agrupados en dos grandes grupos: bacterias y eucariotas; formuló su teoría sobre la simbiogénesis y la importancia de esta en la evolución; apoyó desde el primer momento la hipótesis de Gaia del químico James E. Lovelock, contribuyendo a ella desde la biología e intentando que adquiriera categoría de teoría; y ha realizado una suma de trabajos concretos sobre organismos bacterianos y formas de vida simbióticas, entre otras. Actualmente trabaja profundizando en el estudio de diferentes espiroquetas y su posible protagonismo en procesos simbiogenéticos.
Ella trae una influencia espectacular porque trae la mezcla de biología con humanidades. Ella es del linaje de estos científicos: Galileo Galilei, Copérnico y Newton. Es una científica que trae ideas radicales, pero que el tiempo y la historia demuestran que son correctas.
Teoría de la endosimbiosis seriada (SET)
La teoría de la endosimbiosis seriada (SET) describe el origen de las células eucariotas como consecuencia de sucesivas incorporaciones simbiogenéticas de diferentes células procariotas. Margulis considera que esta teoría, en la que define ese proceso con una serie de interacciones simbióticas, es su mejor trabajo.
Tras quince intentos fracasados de publicar sus trabajos sobre el origen de las células eucariotas,en 1966 logró que la revista Journal of Theoretical Biology la aceptara y finalmente publicara a finales de 1967 su artículo Origin of Mitosing Cells (gracias, según ella misma dice, al especial interés del que fuera su editor James F. DaNelly). Max Taylor, profesor de la Universidad de la Columbia Británica especializado en protistas, fue quien la bautizó con el acrónimo SET (Serial Endosymbiosis Theory).

Margulis continuó trabajando en su teoría sobre el origen de las células eucariotas y lo que en principio fue un artículo adquirió las dimensiones de un libro. Nuevamente fracasó en sus intentos de publicar (la que entonces era su editorial, Academia Press, tras mantener el manuscrito retenido durante cinco meses le envió una carta donde le comunicaban su rechazo sin más explicaciones). Tras más de un año de intentos el libro fue publicado por Yale University Press.
El paso de procariotas a eucariotas significó el gran salto en complejidad de la vida y uno de los más importantes de su evolución. Sin este paso, sin la complejidad que adquirieron las células eucariotas, sin la división de trabajo entre membranas y orgánulos presente en estas células, no habrían sido posibles ulteriores pasos como la aparición de los pluricelulares. La vida, probablemente, se habría limitado a constituirse en un conglomerado de bacterias. De hecho, los cuatro reinos restantes procedemos de ese salto cualitativo. El éxito de estas células eucariotas posibilitó las posteriores radiaciones adaptativas de la vida que han desembocado en la gran variedad de especies que existe en la actualidad.

La idea fundamental es que los genes adicionales que aparecen en el citoplasma de las células animales, vegetales y otras células nucleadas no son «genes desnudos», sino que más bien tienen su origen en genes bacterianos. Estos genes son el legado palpable de un pasado violento, competitivo y formador de treguas. Las bacterias que hace mucho tiempo fueron parcialmente devoradas, y quedaron atrapadas dentro de los cuerpos de otras, se convirtieron en orgánulos. Las bacterias verdes que fotosintetizan y producen oxígeno, las llamadas cianobacterias, todavía existen en los estanques y arroyos, en los lodos y sobre las playas. Sus parientes cohabitan con innumerables organismos de mayor tamaño: todas las plantas y todas las algas. […] Me gusta presumir de que nosotros, mis estudiantes, mis colegas y yo, hemos ganado tres de las cuatro batallas de la teoría de la endosimbiosis seriada (SET). Ahora podemos identificar tres de los cuatro socios que subyacen al origen de la individualidad celular. Los científicos interesados en este asunto están ahora de acuerdo en que la sustancia base de las células, el nucleocitoplasma, descendió de las arqueobacterias; en concreto, la mayor parte del metabolismo constructor de proteínas procede de las bacterias termoacidófilas (“parecidas a las del género Thermoplasma»). Las mitocondrias respiradoras de oxígeno de nuestras células y otras células nucleadas evolucionaron a partir de simbiontes bacterianos ahora llamados «bacterias púrpura» o «proteobacterias». Los cloroplastos y otros plástidos de algas y plantas fueron en su tiempo cianobacterias fotosintéticas de vida libre.
En los años 1960 este paso no constituía ningún problema de comprensión, el neodarwinismo se había ya consolidado y desde este paradigma, este paso se habría dado mediante pequeños cambios adaptativos producto de mutaciones aleatorias (errores en la replicación del ADN) que la selección natural se habría encargado de fijar. También, en aquel tiempo, el evolucionismo, liderado principalmente por zoólogos, ponía su énfasis especialmente en el reino animal, las bacterias pasaban desapercibidas para ese campo de la ciencia y eran tratadas casi exclusivamente como agentes patógenos, estudiadas desde el campo de la medicina.
Con anterioridad a Margulis, principalmente a finales del siglo XIX, principios del XX, diferentes científicos intuyeron y llegaron a proponer que el paso de procariotas a eucariotas era el resultado de interacciones simbióticas. Propuestas que fueron desestimadas, incluso ridiculizadas, y que costó perder el prestigio profesional a sus proponentes. Estos trabajos permanecieron olvidados hasta que Margulis, intuyendo igualmente el origen simbiótico de las eucariotas, los rescató y se apoyó en ellos para formular su teoría simbiogenética.

La propuesta simbiogenética de Margulis chocaba (y aún hoy en día choca, aunque se haya aceptado como un hecho puntual) con el paradigma neo-darwiniano: la fusión de organismos y la plasmación de esa fusión en el ADN del individuo resultante, choca con la tesis neo-darwiniana de que la evolución de los organismos y la aparición de nuevas especies tiene su origen en errores en la replicación del ADN (mutaciones aleatorias). También, la propuesta de Margulis, con las bacterias como agentes activos en un paso tan importante de la evolución, resultó exótica para el evolucionismo de la época, para el que las bacterias habían pasado desapercibidas. Margulis, para apoyar su hipótesis, reunió «gran número de hechos morfológicos, bioquímicos y paleontológicos» propios y de otros científicos.
El escepticismo y el rechazo inicial que suscitó la posibilidad de que las células eucariotas hubiesen evolucionado por simbio-génesis, tuvieron que modificarse, dando paso a la parcial aceptación de la teoría ya que aún hoy se encuentran entre nosotros los descendientes de aquellas primigenias bacterias que protagonizaron la simbiosis.
Margulis se vio gratamente sorprendida cuando durante los años 1970 su teoría bautizada con el acrónimo SET comenzó a despertar el interés del mundo académico, apareciendo trabajos de investigadores y estudiantes de doctorado que desarrollaban aspectos de su teoría. La endosimbiosis seriada fue apoyada por Rayen, Schnepf & Brown y Taylor; siendo muy atacada por otros autores, sobre todo por Alsopp, Raff & Mahler y por Bogorad.
Desde entonces, la SET se ha ido abriendo camino hasta hoy, que se considera probada la incorporación de tres de los cuatro simbiontes, o si se quiere, dos de los tres pasos propuestos por Margulis (la incorporación de las espiroquetas no se considera probada).
Afortunadamente, gracias a la genial bióloga estadounidense Lynn Margulis, hoy tenemos la solución a este desconcertante enigma: una explicación científica mucho más sensata, lúcida y creativa que la que se ha empeñado en sostener la ortodoxia neodarwinista durante los últimos 35 años, pese a tener la solución, publicada por Margulis en 1967, literalmente delante de sus narices. La ortodoxia se ha resistido con uñas y dientes —en gran medida sigue resistiéndose— a aceptar la teoría de Margulis por el sencillo hecho de que no encaja con sus prejuicios darwinistas. Pero si usted logra liberarse de ese lastre irracional y anticientífico, verá inmediatamente que la idea de Margulis no sólo es la correcta, sino que está dotada de un luminoso poder explicativo. El modelo de Margulis sobre el origen de la célula eucariota no es gradual, pero no le hace ninguna falta para ser factible. Implica un suceso brusco y altamente creativo, pero también enteramente materialista, ciego y mecánico.
Teoría de la simbiogénesis

La biología evolutiva se centra, desde sus inicios, en el estudio de animales y plantas, a los cuales se considera actores de las innovaciones que han conducido a los máximos niveles de complejidad y especialización. Para Lynn Margulis estos organismos de una superior complejidad son comunidades de individuos menos complejos capaces de sobrevivir.
Margulis formula que son las bacterias, hasta el momento solo de interés para la bacteriología médica, las artífices de esta complejidad y de los actuales refinamientos de los diferentes organismos. A una visión de animales, plantas y, en general, de todos los pluricelulares como seres individuales, contrapone la visión de comunidades de células auto-organizadas, otorgando a dichas células la máxima potencialidad evolutiva. Las considera el motor de la evolución.
Margulis, que se caracteriza por buscar y valorar los antecedentes de sus trabajos, en lugar de diluir estos antecedentes acuñando nuevos términos, procura usar aquellos que ya usaran los autores de estos trabajos anteriores. Este es el caso del término «simbio-génesis» (Konstantin Mereschkowski, 1855-1921), que ella rescata y con el que define el núcleo central de su propuesta para la biología evolutiva.
Considera que, al igual que las células eucariotas (origen de protistas, animales, hongos y plantas) tienen su origen en la simbiogénesis, la mayoría de las adquisiciones de caracteres de los pluricelulares son producto de la incorporación simbiótica de, principalmente, bacterias de vida libre. Resta valor a las mutaciones aleatorias considerándolas sobrevaloradas por el neodarwinismo y plantea una nueva visión de la evolución por incorporación genética. Los organismos tenderíamos a organizarnos en consorcios:
La simbio-génesis reúne a individuos diferentes para crear entidades más grandes y complejas. Las formas de vida simbio-genéticas son incluso más improbables que sus inverosímiles «progenitores». Los «individuos» permanentemente se fusionan y regulan su reproducción. Generan nuevas poblaciones que se convierten en individuos simbióticos multi-unitarios nuevos, los cuales se convierten en «nuevos individuos» en niveles más amplios e inclusivos de integración.
En este punto, me paro a pensar en la mujer cuando nos preguntan y decimos: “No mi mujer no trabaja, se limita a llevar la casa!.





En estos momentos me viene a la memoria mi santa Madre, que se ganó la gloria cuidando a su marido y a sus cuatro hijos allá por los años cuarenta, en medio de los precarios medios existentes y las muchas carencias que trajo la Grerra Civil de maldito recurso.
En este punto, no sería un hombre justo si olvidara (no ya felicitar), dar las gracias a mi querida esposa que, con los cuatro hijos que hemos tenido, y, además trabajando al mismo tiempo que Yo, ha sido capaz de realizar todas esas obligaciones de la esposa, ama de casa y madre… ¿Cómo lo hizo? Por más vueltas que le doy no encuentro la respuesta. ¿De dónde sacó el Tiempo? Lo cierto es que, hemos llegado hasta aquí, los chicos son mayores y los dos varones (gracias a ella), saben y están preparados para echar una mano en todos ámbitos a sus parejas. Por mi parte, un poco merluzo en ese sentido, ayudé lo que pude, aunque ahora no dejo de pensar que podía haber sido algo más, ya que, más hace el que quiere que el puede. Sin embargo, no siempre somos conscientes de la verdadera realidad, y, a v4eces, cuando nos damos cuenta… ¡Suele ser muy tarde!
Mar
8
Las cosas de la Naturaleza que tratamos de comprender
por Emilio Silvera ~
Clasificado en El Universo ~
Comments (6)
Materia y anti-materia no conviven

Un quark (perteneciente a un protón) y un anti-quark (perteneciente a un antiprotón), colisionando a alta energía, pueden aniquilarse para producir un quark top y un anti-quark top, los cuales decaen luego hacia otras partículas.

la nube de gluones emergen un quark top y un anti-quark top.
- Antes de que el quark top y el anti-quark top se hayan separado mucho, ambos decaen hacia un quark bottom y un anti-quark bottom (respectivamente), con la emisión de partículas portadoras de fuerza W.
- El nuevo quark bottom y el anti-quark bottom son repelidos por el mediador W.

- Un electrón y un neutrino emergen del bosón virtual W–, y un quark up y un anti-quark down emergen del bosón virtual W+.
- El quark bottom y anti-quark bottom, el electrón, el neutrino, el quark up, y el anti-quark down se alejan unos de otros.

https://www.muyinteresante.com/temas/antimateria/
Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Así, en el Universo primitivo, ambas clases de materia estuvieron un tiempo eliminándose la una a la otra y, por una razón que aún no es bien comprendida, la materia era más abundante que la antimateria, así que, lo que ahora vemos es todo materia. Bueno, al menos así se cree que pasó, lo que no impide que exista en el Universo antimateria que, aunque se ha buscado, nunca se encontró fuera de los Laboratorios.

Sobre esta disparidad inicial se ha experimentado mucho, y, en uno de estos experimentos se ha demostrado una pequeña – pero significativa – diferencia de un 1 por ciento entre la cantidad de materia y antimateria producida, lo cual podría apuntar a cómo llegó a producirse nuestra existencia dominada por la materia.
La teoría actual, conocida como Modelo Estaandarde la física de partículas, ha predicho alguna violación de la simetría de materia-antimateria, pero no lo suficiente para explicar cómo surgió nuestro universo, que consta mayormente de materia y apenas unas trazas de antimateria.



Perro, como antes he dicho, ha sido en el Laboratorio donde se ha conseguido aislar y no es la primera vez que el CERN nos sorprende creando átomos de antimateria. Ya en 1995 se produjeron artificialmente los primeros nueve átomos de anti-hidrógeno. Pero ahora el experimento ALPHA del CERN ha dado un paso adelante, produciendo y manteniendo con más tiempo átomos de antimateria, como apareció publicado en un artículo en Nature.
Sigamos. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo, La Bariónica que emite radiación electromagnética y está formada por Quarks y Leptones. La otra, esa que llamamos oscura, la dejaremos reposando allí donde se pueda encontrar (si se encuentra en alguna parte), toda vez que, de ella, no podemos decir mucho con cierta propiedad.
De esa manera se formaron, con esas partículas positivas y los electrones (hadrones -formados por Quarks- y leptones), se originaron grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas.
Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.
Dicho proceso fue mucho más eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en mayor número y, sus brazos, aparecen cuajados de azuladas y nuevas estrellas masivas que, con su radiante luminosidad ultravioleta, inundan grandes regiones que ionizan al gas y polvo que las circundan.
Mar
8
Divulgar conocimientos es obligación de la Ciencia
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Mar
7
¡Qué cosas!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Mar
7
Desde los átomos hasta las estrellas: Un largo viaje
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
“Pues yo he sido a veces un muchacho y una chica,
Un matorral y un pájaro y un pez en las olas saladas.”
Esto lo decía un viejo pensador tratando de escenificar los cambios que podemos sufrir en la vida, como metáfora de los mismos y que, no siempre podemos evitar. Las circunstancias nos llevan por caminos inimaginables.
Empédocles nos hablaba de 4 elementos que lo conformaban todo repartidos en la debida proporción
Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.
Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.
![]()
Conseguimos tener los átomos en nuestras manos
El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

Anotación aclaratoria de lo que es un átomo en realidad:
Me refiero al núcleo atómico, esa parte infinitesimal que representa 1 de 100.000, y, a pesar de tan ínfima parte del átomo, ahí está el 99,9% de la masa de todo el conjunto atómico. Pero además, en ese núcleo están las partículas que llamamos nucleones (protones y neutrones que son Hadrones de la rama bariónica), que a su vez, están estructurados por tripletes de Quarks, dos up y un dowm para los protones y dos dowm y un up para los neutrones. Los Quarks están confinados en las entrañas de estas partículas y son retenidos allí por la fuerza nuclear fuerte (la más fuerte de las cua5tro fuerzas fundamentales, y, la única que crece con la distancia), esta fuerza es intermediada por otra familia de partículas que llamamos Bosones y que en este caso son los Gluones los que intervienen para retener a los Quarks en caso de que traten de separarse.
Sigamos.

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).
El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos nucleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción o parte infinitesimal del total atómico.
Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del nucleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.
Todos sabemos ahora, la función que desarrollan los electrones en el aáomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)
Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electróncae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obstinadamente todos los intentos de conocerlo”.
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.
En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

Las “Computadoras de Harvard” trabajando en el Observatorio en 1891, dos años antes de que se sumara Henrietta Swan Leavitt, una de sus miembros más destacadas.
Antes de que se inventaran las computadoras, el trabajo de computar -o hacer cálculos matemáticos- era hecho por humanos. Y a partir de finales del siglo XIX, muchas de esas “computadoras humanas” fueron mujeres.
Henrietta Swan Leavitt fue una de las más destacadas, ya que su trabajo permitió que otros científicos, incluyendo a Edwin Hubble y Albert Einstein, hicieran descubrimientos que cambiarían el mundo.
Pero posiblemente nada de eso habría ocurrido si no fuera por una iniciativa de Edward Pickering, un astrónomo que en 1877 se convirtió en el director del observatorio (hoy parte del Centro de Astrofísica de la Universidad de Harvard y el Instituto Smithsonian).
Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.
Las Híades
![]()
las Pléyades
Las Pléyades
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.
Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.
El progreso en física, mientras tanto, estaba bloquedado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.
La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.
Plasma en ebullición en la superficie del Sol
Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.
Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica. La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.
El proceso triple Alfa, es el camino de las estrellas para llegar hasta el elemento Carbono
George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.
Si algo debemos tener claro es, precisamente, que no sabemos todo lo que creemos que sabemos.
Emilio Silvera Vázquez
















Totales: 81.550.015
Conectados: 31


































