domingo, 15 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Buscando un nuevo domicilio

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Dado que las distancias que nos separan de las estrellas más cercanas, son inmensos para nuestras posibilidades actuales, la NASA y demás Organizaciones Astronómicas no dejan de estudiar la manera de poder acceder a los mundos más cercanos con alguna posibilidad de habitabilidad.

Próxima Centari parece tener algunas posibilidades. Sin embargo, con nuestra actual tecnología de Naves Espaciales, podríamos tardar unas decenas de miles de años en llegar, lo cual, hace inviable el viaje.

Si esto nos pasa con el planeta más cercano (4,2 años luz)… ¿Qué sería pensar en ir más lejos?

La Humanidad no lo tendrá fácil para viajar por el Espacio, no es nuestro medio natural y tiene demasiados inconvenientes para poder pensar en utilizar el Espacio Interestelar de manera  habitual y cotidiana sin tener la adecuada energía en las naves, el material que impide que la radiación entre en el interior (un campo magnético podría ser la solución), la Gravedad artificial…

Solo nos queda tener esperanza de que, algún día (lejos aún en el futuro), hayamos podido superar todos estos inconvenientes y el viajar a otros mundos sea algo normal, ya que, hemos sabido encontrar la “llave” de la ventana al Hiperespacio que nos acerca a regiones lejanas en poco tiempo.

De todas las maneras, pocas dudas me pueden caber de que, finalmente… ¡Serán los Robots de última generación, los que irán por delante para preparar las instalaciones que servirán para nuestra presencia en planetas extraterrestres.

Todo, en nuestro Universo… ¡Es Energía!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

En esta inmensa, colorida y hermosa Nebulosa de Orión  se crean nuevas estrellas que, llenas de energía emiten radiaciones ultravioletas que ionizan toda la región que las circundan y hace que la Nebulosa resplandezca  como una inconmensurable isla de luces y colores que nos desata la imaginación sabiendo que nuevas estrellas y mundos surgen de todo ese conglomerado de gas y polvo que interacciona con las fuerzas de la Naturaleza presentes en todas partes.

El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber. De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.

 

                             

Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

Central de generación eléctrica - Wikipedia, la enciclopedia libre

 

Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.

Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.

 

                                 

                                                También aquí está presente la energía

La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.

Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con datos y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.

 

 

El conocimiento, las peculiaridades y las complejidades de las diferentes formas de energías, así como su almacenamiento y transformación, requiere que cuantifiquemos esas cualidades y procesos. Para ello debemos introducir cierto número de conceptos científicos y medidas, así como sus unidades correspondientes.

Al hablar sobre energía nos encontramos con el problema de que el uso en el habla común de muchos términos científicos está equivocado. Como dice Henk Tennekes,hemos creado una terrible confusión con los conceptos físicos simples en la vida ordinaria”. Pocos de esos malentendidos son tan generales y molestos como los relacionados con los términos energía, potencia y fuerza.

 

 

Definimos fuerza como la intensidad con la que intentamos desplazar – empujar, tirar, levantar, golpear… – un objeto. Podemos ejercer una fuerza enorme sobre la roca que sobresale en una montaña incluso si ésta permanece inmóvil. Sin embargo, sólo realizamos trabajo cuando el objeto que empujamos se mueve en la dirección de la fuerza aplicada. De hecho, se define el trabajo realizado como el producto de la fuerza aplicada por la distancia recorrida. La energía, como se define en los libros de texto, es “la capacidad de hacer trabajo”, y así, ésta se medirá con las mismas unidades que el trabajo.

Si medimos la fuerza en unidades denominadas newton (N), llamada así en honor de Isaac Newton, y la distancia en metros (m), el trabajo se mide en la malsonante unidad de newton-metro. Para simplificar, los científicos llaman al newton-metro julio (J), en honor de James Prescot Joule (1.818 – 1.889), quien publicó el primer cálculo preciso de la equivalencia entre trabajo y energía. El julio es la unidad estándar de trabajo y energía.

 

 

La potencia es simplemente la tasa de trabajo, es decir, un flujo de energía por unidad de tiempo. A un julio por segundo lo llamamos vatio (W) en honor de James Watt (1.736 – 1.819), inventor de la máquina de vapor mejorada y el hombre que estableció la primera unidad de potencia, que no fue el vatio sino el caballo de vapor (CV), una unidad aproximadamente igual a 750 W.

Seguimos con algunas tablas para documentarnos:

 

Almacenamiento de energía
Energía de Magnitud
Reservas mundiales de carbón 200.000 EJ
Reservas mundiales de masa vegetal 10.000 EJ
Calor latente de un tormenta 5 PJ
Carga de carbón de un camión de 100 t 2 TJ
Barril de petróleo crudo 6 GJ
Botella de vino de mesa blanco 3 MJ
Garbanzo pequeño 5 KJ
Mosca en la mesa de la cocina 9 mJ
Gota de agua de 2 mm en una hoja de árbol 4 μJ
Flujos de energía
Energía de Magnitud
Radiación solar 5.500.000 EJ
Fotosíntesis mundial neta 2.000 EJ
Producción mundial de combustibles fósiles 300 EJ
Huracán típico en el Caribe 38 EJ
La mayor explosión de bomba H en 1.961 240 PJ
Calor latente de un tormenta 5 PJ
Bomba de Hiroshima en 1.945 84 TJ
Metabolismo basal de un caballo grande 100 MJ
Ingesta diaria de un adulto 10 MJ
Pulsación de una tecla del ordenador 20 mJ
Salto de una pulga 100 nJ

 

 

Para avanzar un poco más tenemos que pasar de empujar y tirar (lo que llamamos energía mecánica o energía cinética) a calentar (energía térmica). Definimos una unidad llamada caloría como la cantidad de calor necesario para elevar la temperatura de un gramo de agua desde 14’5 a 15’5 ºC. Usando esta unidad podemos comparar energías térmicas, pero una vez más, esta unidad no nos permite comparar todas las clases diferentes de energías.

Si nos preguntamos ¿Qué es la energía?, esta pregunta no es fácil de contestar. Incluso uno de los más grandes físicos modernos resulta de poca ayuda: “es importante darse cuenta de que en física, en realidad, no se sabe muy bien qué es la energía. No tenemos una idea de por qué la energía está formada por pequeños pulsos de una cantidad definida”, decía Richard Feynman en su libro Lectures on Physics.

David Rose, para definir la energía, decía: “es un concepto abstracto inventado por los físicos en el siglo XIX para describir cuantitativamente una amplia variedad de fenómenos naturales”.

 

Definir la energía no ha sido nunca cosa fácil, dado que está presente en todo lo que podamos mirar desde una piedra que yace en las finas arenas del fondo de un río, la montaña que majestuosa nos mira desde su altanera e imponente figura, la simple visión de un hermoso árbol, y, sobre todo, energía para mí… ¡son las estrellas del espacio interestelar! que crean el material del que se forjan los mundos y surge la vida, la más elevada forma del energía que está presente en nuestro Universo.

El conocimiento moderno de la energía incluye un número de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

 

Equivalencia de energía de masa: correlación de masa y energía en física y su relevancia espiritual

 

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo como una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como todos la conocemos:  E = mc2; la ecuación más conocida de la física.

 

Planetas Sistema Solar GIF - Planetas Sistema Solar Planets - Discover & Share GIFs

       Todos los planetas giran alrededor del Sol

El segundo descubrimiento se demuestra continuamente en miles de trasformaciones energéticas que se producen en el universo. La energía gravitatoria mantiene las galaxias en movimiento, a la Tierra girando alrededor del Sol y confinada la atmósfera que hace nuestro planeta habitable. La transformación de la energía nuclear en el interior del Sol produce el continuo flujo de energía electromagnética, llamada radiación solar. Una pequeña parte de esa energía llega al planeta Tierra que, a su vez, libera energía geotérmica. El calor producido en ambos procesos pone en movimiento la atmósfera, los océanos y las gigantescas placas tectónicas terrestres.

 

Proceso de fotosíntesis on Make a GIF

                                      La Naturaleza hace maravillas

Una pequeña parte de la energía radiante del Sol se transforma, a través de la fotosíntesis, en reservas de energía química, que son utilizadas por muchas clases de bacterias y plantas. Los seres heterótrofos (organismos que van desde las bacterias, los protozoos y los hongos hasta los mamíferos), ingieren y reorganizan vegetales de las plantas en nuevos enlaces químicos y los utilizan para crear energía mecánica (cinética).

 

                                           

        Piscina de energía geotérmica en el Parque Nacional Yellowstone en Wyoming EE.UU.

¿Qué decir de la atmósfera de la Tierra?

 

La atmósfera terrestre (troposfera y estratosfera) es tan delgada que, dibujando el planeta con un diámetro de 10 cm, tendría un espesor de unos 0’4 milímetros, equivalente al grosor de una línea de lápiz. Sin embargo, esta delgada capa gaseosa posee una importancia crítica para mantener el balance energético de la Tierra.

 

El planeta es adecuado para el desarrollo de la vida debido a que su atmósfera el llamativamente diferente de la de sus vecinos más próximos. La atmósfera de Venus está compuesta en un 96 por ciento de CO2, con un 3’5 por ciento de nitrógeno y trazas de gases nobles. La atmósfera de Marte contiene un 95’3 por ciento de CO2, un 2’7 por ciento de nitrógeno, 1’6 por ciento de argón y también trazas de agua y O3. Una atmósfera parecida a la terrestre determinaría que en la superficie marciana la temperatura sería superior a los 200º C y la presión de unos pocos MPa. En tales condiciones no podría existir vida compleja basada en el carbono con tejidos húmedos.

Hay pocas dudas de que la primera atmósfera de la Tierra contuviera abundante CO2, pero no está claro si su posterior desaparición se debió exclusivamente a procesos geoquímicos inorgánicos (sobre todo a la pérdida de ácido carbónico), o si los primeros organismos fueron importantes en la posterior conversión de CO2 en sedimentos de CaCO3. Parece claro, por el contrario, que la fotosíntesis llevada a cabo inicialmente por bacterias fue la responsable de la transformación de la atmósfera sin oxígeno en el Arcaico.

 

Viento solar - Wikipedia, la enciclopedia libreLa magnetósfera de la Tierra "frena" al viento solar • Tendencias21

          La Biosfera se vio protegida contra la radiación ultravioleta que llegaba del espacio

El aumento de oxígeno comenzó a acelerarse hace unos 2.100 millones de años y el actual nivel del 20 por ciento se alcanzó hace unos 300 millones de años. El aumento del oxígeno troposférico permitió la formación de ozono estratosférico, que protegió la biosfera de la energética radiación UV de longitudes de onda inferiores a 295 nm. Sin esta protección no hubiera sido posible la evolución de plantas y animales más complejos, ya que si la radiación UV de frecuencias menores ya mata los gérmenes y quema la piel, la de frecuencias altas es letal para la mayoría de los organismos.

Las actividades humanas pueden modificar poco las proporciones de los constituyentes atmosféricos. La cantidad de nitrógeno que se utiliza para sintetizar amoniaco representa una fracción despreciable de las enormes reservas troposféricas y la desnitrificación finalmente recicle todo el gas. Incluso el consumo de todas las reservas conocidas de combustibles fósiles (un hecho imposible debido a los costos prohibitivos de la extracción de algunas de estas fuentes de energía, sumergidas en las fosas abisales a miles de kilómetros de profundidad) reduciría la concentración de O2 en menos de un 2 por ciento.

 

                     

 

Las emisiones locales y regionales de aire contaminado contienen muchos gases, pero los riesgos de un cambio climático global sólo pueden venir de mayores emisiones de compuestos en trazas. Algunos de esos gases (sobre todo CO2, N2O y CH4), así como el vapor de agua, absorben fuertemente la radiación en el espectro IR. Consecuentemente, la radiación IR emitida por la superficie de la Tierra tiene longitudes de onda comprendidas en distintas ventanas intercaladas entre bandas de absorción.

Las bandas de absorción más importantes del vapor de agua están comprendidas entre 2’5 y 3 μm y entre 5 y 7 μm, mientras que el CO2 tiene dos picos estrechos en 2’5 y 4 μm, y una banda más ancha cerca de los 15 μm. Como la radiación terrestre está completamente incluida en el espectro IR, esta absorción tiene un gran efecto en el balance de la radiación de la Tierra.

 

Qué es la BIOSFERA: Capas y Características - Resumen

 

Para mantener la biosfera habitable hacen falta solamente concentraciones muy pequeñas de gases de “efecto invernadero”. El CO2 representa actualmente sólo unos 360 ppm* (menos del 0’04%) de la atmósfera terrestre, y los demás gases en traza miden en ppb o ppt. Esta composición hace que la temperatura media en la superficie del planeta sea de unos 16º C, la cual, combinada con una presión superficial de 101 KPa, asegura que el agua permanezca líquida y que sea posible la fotosíntesis y el metabolismo heterótrofo. Hay que procurar (hablando coloquialmente) que Gaia no se enfade, ya que el aumento de las concentraciones de gases en traza elevaría gradualmente la temperatura media de la troposfera.

 

Los Campos de cultivo tropicales se expanden 48 milliones de hectáreas en 10 años, aumentando la preocupación por el medioambientePara frenar el cambio climático, debemos extraer carbono del aire. Pero ¿cómo? | National Geographic

 

La conversión de bosques y praderas en campos de cultivo y la utilización de combustibles sólidos han hecho aumentar las emisiones de CO2, mientras que el creciente uso de fertilizantes nitrogenados, la cada vez más numerosa cabaña vacuna y el aumento del cultivo de arroz emiten cantidades adicionales de N2O y CH4. Los fluorforocarbonados, además de sus destructivos efectos sobre el ozono troposférico, son gases con efecto invernadero muy potentes. Debido a la acción combinada de los gases invernaderos antropogénicos, el flujo medio de calor absorbido ha aumentado en 2’5 W/m2 en grandes áreas del hemisferio norte, pero no estamos seguros de hasta dónde llegará esta tendencia ni de su velocidad. Lo mejor sería no confiarse; mi padre, hombre no cultivado, decía a menudo que “más vale un por si acaso que un yo creí”.

 

La atmósfera también interviene en el balance energético del planeta redistribuyendo el calor sensible y el calor latente del agua con los vientos y las lluvias, y de una manera completamente diferente pero más espectacular, con los rayos. La mayoría de esas descargas de elevadísima concentración de energía se originan en los cumulonimbos, y tienen una enorme potencia (duplicar el tamaño de la nube implica aumentar la potencia del rayo treinta veces). Un rayo normal descarga entre 20 y 50 MJ, la mayor parte de esa energía en 10 μs, produciendo la impresionante potencia de 1-10 GW. La luz visible emitida representa solamente el 0’2-2% de la energía disipada, invirtiéndose el resto en calentar la atmósfera a su alrededor y en la energía acústica del trueno. La observación de satélites indica que por término medio se producen unos cien mil relámpagos por segundo.

Sabemos que la atmósfera es la envoltura gaseosa que rodea a un cuerpo astronómico. Varios planetas (incluyendo la Tierra) poseen atmósferas considerables debido a su intensa gravedad. Los movimientos de los gases en las atmósferas planetarias en respuesta al calentamiento, junto con las fuerzas rotacionales, generan sistemas meteorológicos. Los satélites planetarios Titán y Tritón también poseen atmósferas.

 

La Tierra alcanza hoy su mayor distancia del Sol

 

¡Nuestra casa! De cuyas maravillas y su relación con el Sol, sería interesante y muy instructivo saber que, esa luz y ese calor que nos llega al planeta, es el responsable de la presencia de la Vida

Creo que la atmósfera es quizá el término más vago para identificar una parte de un cuerpo celeste. Está referido a su envoltura superficial, generalmente de un planeta o estrella. Parece fácil decirlo, pero los gases no son como un líquido o un trozo de roca, en los que puede determinarse exactamente dónde está la superficie que los separa del entorno circundante de una manera precisa. Es imposible indicar el nivel exacto donde acaba la atmósfera y comienza el plasma interplanetario. De hecho, los gases apenas están sometidos a la fuerza de la gravedad; se “esfuman” hacia el espacio y abandonan continuamente el cuerpo celeste. En el caso de la Tierra, por estar cerca del Sol, determinar dónde termina la atmósfera terrestre y dónde empieza la solar es un problema al que sólo puede responderse teóricamente, que dicho sea de paso, permite licencias literarias que prohíben las matemáticas.

emilio silvera

El Mundo que nos espera

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

OLOGÍA

El robot de IA que da muchísimo miedo responde a la pregunta que todos nos hacemos: «Mi creador no…»

El robot de IA que da muchísimo miedo responde a la pregunta que todos nos hacemos:

En estos momentos, la tecnología está avanzando a un ritmo imparable, y hay quienes se muestran muy preocupados por el futuro de la sociedad. Es el caso de James Cameron, que recientemente ha manifestado que tiene pánico por el desarrollo de la Inteligencia Artificial (IA) y prevé un futuro a ‘Lo Termintator’. Y es que, el límite entre realidad y ficción es cada vez más difuso, hasta el punto de que el pasado 7 de julio se celebró la primera rueda de prensa de robots en Ginebra.

 

Ameca, el robot de IA responde a las pregunta de lo periodistas

“La androide respondió lo siguiente: “Trabajaré junto a los humanos para prestar asistencia y apoyo, y no sustituiré ningún puesto de trabajo existente”. Precisamente que la IA acabe con puestos de trabajo preocupa actualmente a muchas personas de ciertos ámbitos laborales.”

La rueda de prensa tuvo lugar durante la Cumbre sobre la Inteligencia Artificial, en la que se presentaron nuevas tecnologías. Los organizadores defienden el uso de la IA y los robos para lograr algunos de los mayores objetivos a los que se enfrenta la sociedad de cara al futuro, como el hambre y las enfermedades.

 

 

Robot como yo pueden servir para mejorar nuestras vidas y hacer del mundo un lugar mejor

Una rueda de prensa en la que los periodistas les hicieron varias preguntas a los robots. Algunas de ellos recibieron respuestas muy divertidas, pero hubo una en concreto que dejó a todos muy sorprendidos. Y es que, un periodista le preguntó al robot humanoide Ameca si entre sus planes de futuro estaba el de rebelarse contra su creador.

Antes de responder, el robot, bien conocido por sus expresiones, propias de una persona, y su voz de mujer, entrecerró los ojos para mirar de reojo a su creador, que estaba sentado justo a su lado. Luego, respondió: «No estoy seguro de por qué piensas eso. Mi creador no ha sido más que amable conmigo y estoy muy contento con mi situación actual».

 

Grace, el robot humanoide, fabricado para cuidar a los mayores - Telecinco

Otro periodista le preguntó a la robot enfermera Grace si consideraba que su existencia podía destruir millones de puestos de trabajo. Trabajaré junto a los humanos para prestar asistencia y apoyo, y no sustituiré ningún puesto de trabajo existente. Robots como yo pueden servir para mejorar nuestras vidas y hacer del mundo un lugar mejor. Creo que es sólo cuestión de tiempo que veamos miles de robots como yo por ahí marcando la diferencia», según recoge la revista ‘Muy Interesante’.

Tal y como indica la ONU en su web, los robots pueden resultar de gran ayuda en lo que a mejorar el bienestar y la salud de las personas se refiere. Pueden ofrecer servicios educativos, ayudar a personas discapacitadas, construir infraestructura, reducir residuos, asistir en catástrofes naturales, etc.

Reportaje de prensa en O.L. Diario

La Mecánica cuántica no es nada sencilla

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Que no te has enterado de nada?

Bueno, siempre lo puedes ver más veces

Que sigues sin enterarte. Puedes suponer que lo que dice es cierto

Lo malo de eso es que, la Física no es cosa de fe.

La Vida Media de las Partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

                                                                                                                                                                                Una explicación científica de la curiosidad | Explora | Univision

“Una de las frases más conocidas del genio Albert Einstein es aquella en la que decía no tener ningún talento en especial, sino simplemente ser “apasionadamente curioso”. Mientras que la inteligencia se entiende y tiene unidades de medida –el llamado Coeficiente Intelectual- la curiosidad sigue siendo una característica de la personalidad.”

 

Reportajes y fotografías de Futuro en National GeographicEl futuro de la inteligencia artificial: ¿'Boom' final o colapso? | Computer Hoy

 

El futuro es un libro en blanco, y, lo que se pueda leer en él, aún no está escrito. ¿Dependerá, en parte, de nosotros? Pocas dudas pueden caber en el sentido de que, una gran parte de ese Futuro se está construyendo en el Presente que, en parte, está hecho del Pasado. Es la Causalidad.

 

 

La ciudad futurista que busca prepararnos para vivir en Marte mientras nos ayuda a sobrevivir al cambio climático en nuestro planetaAsí es el prototipo de cómo sería una ciudad en Marte

 

Hoy todavía no, pero “mañana”… Tendremos ciudades en Marte y, seguramente, en algún planeta más de las cercanías al Sistema Solar. 

 

Laboratorio estelar y cuna de mundos, y… ¿De vida? En lugares como este se forman moléculas esenciales para la vida. Anomalías gravitatorias forman torbellinos de materia que van girando y se condensan más más, atrae material hasta que, finalmente, en el núcleo se fusionan los protones del hidrógeno y nace una nueva estrella que brilla y emite luz y radiación durante miles de millones de años.

“La distinción entre el pasado, el presente y el futuro es solo una ilusión obstinadamente persistente”. Decía el viejo Einstein.

Siendo efímero nuestro Tiempo, nosotros lo percibimos como una larga travesía que finaliza con la eterna oscuridad. 

La Mente Humana está conectada con el Tiempo que será “efímero” o “eterno” dependiendo de la situación que estemos viviendo: Una hora con la amada nos parecerá un segundo, mientras que un segundo soportando dolor… ¡Será una eternidad! Por eso decía el sabio que el Tiempo era Relativo.

9 cosas misteriosas sobre la mente humana que a todos intrigan | Explora | Univision

                 ¿Sabremos algún día, lo que la Mente es? Hemos llamado “MENTE” a un algo inmaterial que se construye en el cerebro. Nunca nadie ha sabido explicar lo que es, y, hasta la Filosofía ha tenido que echar mano de la Metafísica para tratar de explicar el Ser.

 

 

Tenemos la suerte de vivir en un planeta lleno de maravilla que no siempre sabemos apreciar

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugieren. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les trae a la Mente. Un paisaje puede ser descrito de muy distintas maneras según quién nos lo pueda contar.

 

   Estos fantásticos animales reinaron en la Tierra durante 150 millones de años

 

Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual (conocida), supone unos dos millones de especies según algunas estimaciones. Sin embargo, se estima que pueden existir cerca de ocho millones.

 

Cuantas especies habitan la Tierra? Último balance: 2.339.460 - Diario Ecologia

Los diferentes tipos de bacterias (y sus características)

Animales Aéreos - Concepto, tipos, características y ejemplos

Diferentes tipos de insectos y animales sobre fondo blanco. | Vector Premium

                                     Y son muchas más las que aún no conocemos

La  Tierra acoge a todas esas especies de vida que proliferan por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.

http://4.bp.blogspot.com/-flEk3ifYkVI/T5crO29uW2I/AAAAAAAAANo/SjVtQ0AtTTs/s1600/particle_poster_big.jpg
Pero entremos en el fascinante “universo” de las partículas subatómicas y veamos que vida tienen y que tiempo están entre nosotros antes de destruirse y desaparecer.

Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

 

 

Si miramos una tabla de las partículas más conocidas y familiares (fotónelectrón muón tau, la serie de neutrinos, los mesones con sus pioneskaones, etc., y, los Hadrones bariones como el protónneutrónlambdasigmapsi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.

 

                                   

 

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

 

http://nuclear.fis.ucm.es/FERIA/IMAGENES/TAB_ISOTOPOS.JPG

 

¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

 

                 

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

 

               

 

Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN. Lanzan haces de partículas a velocidades relativistas para hacerlas chocar y saber que sale de su interior, es la manera de conocer de qué está hecha la materia.

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

 

Bosón W: Un acelerador de partículas atisba “un nuevo mecanismo de la naturaleza” | Ciencia | EL PAÍS

La medida precisa de la masa del bosón W, en un plis-plas

Colisionando partículas leptones tau positivos y negativos encontraron los Bosones W+ y W-.

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

 

Resultado de imagen de Onda cuántica

 

Se hablaba de ondas cuánticas y también, de ondas gravitacionales. Ambas, durante mucho tiempo fueron perseguidas y, a estas alturas, una vez halladas ambas, persiguen la partícula de la “materia oscura

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

 

                         

 

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

 

Radiactividad y tipos de desintegración radiactiva - El Gen Curioso

 

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

-Protón
El protón está compuesto de 2 quarks Up y un quark Down.
-Neutrón
El neutrón está compuesto de 2 quarks Down y un quark Up.
-Lambda
Lambda (Λ0) está compuesto de uds (Up, Down, y Strange).
Existen varios tipos de Lambdas (Λ+cΛ0b).
-Sigma
Sigma (Σ+) está compuesto de sus (2 quarks Up, y un quark Strange). Existen varios tipos de Sigmas (Σ0Σ−Σ++ c,…).
-Xi
Xi (Ξ0) está compuesto de uss (2 quarks Strange, y un quark Up).
Existen varios tipos de Xi (Ξ−Ξ+ cΞ0 c,…).
-Omega
 Omega (Ω0
c
) está compuesto de ssc (2 quarks Strange, y un quark Charm).
Existen varios tipos de Omegas (Ω− bΩ+ ccΩ0 cb,…).

Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

 

 

Física : Blog de Emilio Silvera V.ROLscience: Hadrones

Bueno, los Hadrones no son elementales

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

 

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

 

            Acelerador lineal de Generador de Gutenberg de una sola etapa de 2 MeV.

Un acelerador de partículas es un dispositivo que utiliza campos electromagnéticos para acelerar partículas cargadas a muy altas velocidades, y así, colisionarlas con otras partículas. De esta manera, se generan multitud de nuevas partículas que -generalmente- son muy inestables y duran menos de un segundo, esto permite estudiar más a fondo las partículas que fueron colisionadas por medio de las que fueron generadas.

Partes de la Materia

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.

 

Resultado de imagen de Los futuros experimentos del LHC

       Hace tiempo que comenzaron los trabajos para los nuevos experimentos del LHC a mayor energía

Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro,  se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higss, nos dijeron que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto. Ahora, en la nueva etapa, se buscaran partículas simétricas supermasivas como componente de la “materia oscura” (si es que en realidad existe eso).

emilio silvera