Feb
9
Parece que la “materia oscura” se desvanece
por Emilio Silvera ~
Clasificado en Materia extraña ~
Comments (2)
¿Y si la materia oscura no existiera?
Una nueva teoría niega la existencia de la “materia oscura y de la energía oscura” porque los fenómenos que las justificarían pueden demostrarse sin ellas,.
Algunos dicen que todo el Universo está permeado por esa “materia oscura” que no podemos ver pero condiciona lo que el Universo es. Y, lo mismo pasa con la energía oscura que se supone incide en todos los acontecimientos del Cosmos.
En 1933, Fritz Zwicky hizo un descubrimiento que dejó al mundo sin palabras: había, afirmó en un estudio este astrónomo suizo, mucha más materia en el Universo de la que realmente podemos ver. Los astrónomos la bautizaron “materia oscura”. Tuvieron que pasar casi cuatro décadas para que encontraran una prueba sólida de la “existencia de la materia oscura”. Lo hizo Vera Rubin, en 1970, y con ello consiguió explicar los movimientos y la velocidad de las estrellas. Más cerca en el tiempo los científicos han dedicado considerables recursos a identificar la materia oscura, ya sea en el espacio, bajo tierra o en laboratorios como el del CERN.
Nos han vendido imágenes de la “materia oscura” inexistentes
Para consolidar aún más el concepto de materia oscura, el Premio Nobel de Física de 2011 fue para un grupo de científicos por “el descubrimiento de la expansión acelerada del universo a través de la observación de supernovas distantes”, algo posible gracias a la energía oscura.
Sin embargo, a pesar de los enormes recursos que se han invertido, aún quedan muchos misterios sin explicar relacionados con la materia y la energía oscura. O al menos quedaban. Ya que de acuerdo con André Maeder, investigador de la Universidad de Ginebra (UNIGE), Suiza, ambos conceptos pueden dejar de ser válidos. En un artículo publicado en Astrophysical Journal, Maeder señala que los fenómenos que supuestamente describen la “materia y la energía oscura” pueden demostrarse sin ellos.

La forma en que representamos el universo y su historia se describe mediante las ecuaciones de Einstein de la relatividad general, la gravitación universal de Newton y la mecánica cuántica. El modelo de consenso actualmente es el de un Big Bang seguido de una expansión.
“En este modelo –señala Maeder en un comunicado–, hay una hipótesis de partida que no se ha tenido en cuenta, en mi opinión. Con eso me refiero al concepto de invariante: la invariancia del espacio vacío, en otras palabras, el espacio vacío y sus propiedades no cambian después de una dilatación o contracción. El espacio vacío juega un papel primordial en las ecuaciones de Einstein, ya que trata una cantidad conocida como “constante cosmológica”, y el modelo del universo resultante depende de ello”.
Sobre la base de esta hipótesis, Maeder está ahora reexaminando el modelo del universo, señalando que la invariancia de escala del espacio vacío también está presente en la teoría fundamental del electromagnetismo.

Un estudio pone en duda la existencia de la materia oscura y la energía oscura, conceptos elaborados hace casi un siglo. THINKSTOCK
Cuando Maeder llevó a cabo pruebas cosmológicas con este nuevo modelo, descubrió que coincidía con las observaciones. También descubrió que el modelo predice la expansión acelerada del universo sin tener que factorizar ninguna partícula o energía oscura. En resumen, según sus cálculos, la energía oscura puede no existir realmente ya que la aceleración de la expansión estaría contenida en las ecuaciones de la física.
Otro análisis realizado por Maeder se centró en la ley de gravitación universal de Newton. Si se incorpora a ella la hipótesis de este científico, la ley se modifica ligeramente. De hecho, contiene un término de aceleración externa muy pequeño, que es particularmente significativo en bajas densidades. Esta ley modificada, conduce a masas de cúmulos que concuerdan con la de materia visible (contrariamente a lo que argumentó Zwicky en 1933). Esto significa que no se necesita materia oscura para explicar las velocidades de las galaxias.
Una nueva prueba demostró que la teoría de Maederl también predice las altas velocidades alcanzadas por las estrellas en las regiones exteriores de las galaxias (como Rubin había observado), sin tener que recurrir a la materia oscura para describirlas. Finalmente, también permitió observar la dispersión de las velocidades de las estrellas que oscilaban alrededor del plano de la Vía Láctea. Esta dispersión, que aumenta con la edad de las estrellas relevantes, se puede explicar muy bien utilizando la hipótesis del espacio vacío invariante, mientras que antes no había acuerdo sobre el origen de este efecto.
“El anuncio de este modelo –concluye Maeder–, por fin resuelve dos de los mayores misterios de la astronomía y es fiel al espíritu de la ciencia: nada puede darse por sentado, ni en términos de experiencia, observación o razonamiento”.
¿Demasiado bueno para ser verdad?
Feb
8
Las interacciones fundamentales
por Emilio Silvera ~
Clasificado en Carnaval de Matematicas ~
Comments (0)
Las interacciones fundamentales de la naturaleza
Interacción | Intensidad relativa | Alcance | Partícula mediadora | |||
Nuclear fuerte | → | 1 | → | Corto | → | Gluón |
Electromagnética | → | 0’0073 | → | Largo | → | Fotón |
Nuclear débil | → | 10-9 | → | Muy corto | → | W y Z |
Gravitacional | → | 10-38 | → | Largo | → | Gravitón (No encontrado) |
Estas fuerzas de la naturaleza que rigen todas las interacciones del Universo en el que vivimos, hacen que las partículas elementales que conforman la materia se comporten como lo hacen.
Todo lo grande, todo, está formado por combinaciones de estos minúsculos objetos que no podemos ver, pero que en realidad son tan importantes que hacen posible la existencia de los planetas, las estrellas, las galaxias, los océanos, los seres vivos y toda la materia inerte del universo, que regida por las fuerzas arriba reseñadas componen el cuadro que los físicos llaman el modelo estándar, que aun no siendo perfecto, sí supone una herramienta poderosa para trabajar y saber sobre estas cuestiones, tanto a nivel microscópico (la mecánica cuántica), como a nivel cosmológico (la relatividad).
Así las cosas, era inevitablemente necesaria una partícula de espín 0 para que la interacción débil tuviera las simetrías que tiene a través del mecanismo de Higgs-Kibble. Esta partícula de Higgs se acopla ahora a los quarks y a los leptones para dotarlos de masa. Es, pues, una alianza entre la interacción débil y la interacción de Higgs lo que permite muchos tipos de desintegración de hadrones extraños y con encanto.
Feb
8
Un repaso a los Rumores del Saber III
por Emilio Silvera ~
Clasificado en Rumores del Saber ~
Comments (2)
La realeza en Babilonia, no era enterrada sola, junto al rey y a la reina, en una cámara (según descubrió el arqueólogo británico Woolley), yacía una compañía de soldados (junto a sus huesos hallaron cascos y lanzas de cobre) y en otro recinto estaban los esqueletos de nueve damas de la corte, todavía luciendo sus intrincados tocados. Aunque se trataba de una práctica espeluznante, es una muestra de las creencias antiguas.
No se pudo encontrar texto alguno que mencionara a este entierro, lo que hace pensar que, cuando sucedió, aún no se conocía la escritura.
En otro trabajo aquí expuesto me referí a los orígenes de la escritura (una cuestión muy polémica sobre uno de los pasos más importantes de la Humanidad), y, propiamente reconocida como tal, tiene más de un candidato, y en éste momento, son al menos tres. Durante muchos años se dio como seguro que la escritura cuneiforme de Mesopotamia era la más antigua.
La escritura cuneiforme es el más antiguo sistema de escritura conocido hasta la fecha. Su soporte son tabletas de arcilla y ocasionalmente tabletas de metal y piedra, y su origen está en la antigua Mesopotamia. Se llama cuneiforme porque para trasladarla a la arcilla húmeda utilizaban unas cañas biseladas en forma de cuña.
Había, sin embargo, un inconveniente. El cuneiforme se compone de signos más o menos abstractos, y son muchos los que opinan que la primera escritura primera estaba relacionada con vínculos más fuertes e incuestionables con la pintura y los pictogramas, signos que son en parte dibujos de objetos y en parte símbolos.
En ese punto, hay que referirse a la obra de la arqueóloga Denise Schamndt-Besserat, que a finales de la década de los sesenta, esta investigadora advirtió que por todo Oriente Próximo se habían encontrado miles de “objetos de arcilla bastante prosaicos” que la mayoría de los arqueólogos habían considerados insignificantes. Ella, pensaba lo contrario: que dichos objetos podían haber conformado un antiguo sistema que los estudiosos habían pasado por alto. Visitó y estudió varias colecciones de estos “especímenes”, como los llamaba, en Oriente Próximo, el norte de África, Europa y América.
Feb
7
Sometidos por los agujeros negros
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (0)
Un equipo de astrónomos descubrió la existencia de un discreto agujero negro al observar su efecto en una nube de gas interestelar. Este agujero negro de masa intermedia es solo uno de más de 100 millones que se cree que existen en nuestra galaxia. Esta investigación inaugura un nuevo método para buscar agujeros negros ocultos y nos ayuda a entender mejor los procesos de crecimiento y evolución de éstos.
Cada día se descubren nuevas cosas que antes ignorábamos, y, según se deduce de los hechos a lo largo de la historia.. La Ciencia está en un callejón sin salida, no puede hacer nada para evitarlo, y, lo único que le queda… ¡Es crecer u crecer! En un artículo del Diario ABC pude leer ayer un reportaje sobre los agujeros negros y particularmente sobre el que está en el centro de nuestra Galaxia. Le he puesto algunas imágenes para no hacerlo tan pesado y, aquí os lo dejo:
“Polvo y moléculas en la región central de nuestra galaxia: la imagen de fondo muestra la emisión de polvo en una combinación de datos obtenidos con el telescopio APEX y el Observatorio Espacial Plack en una longitud de onda de 860 micrómetros. La molécula orgánica de cianuro isopropílico con un núcleo de carbono bifurcado (i-C3H7CN, izquierda) así la molécula propilo cianuro normal (n-C3H7CN, derecha) fueron ambas detectadas usando el arreglo de radiotelescopios de Atacama en la región Sagitario B2, a casi 300 años luz de distancia del centro galáctico Sagitario A.”
(Crédito: MPIfR/A. Weiß — imágen de fondo, University of Cologne/M. Koerber — modelos moleculares, amd MPIfR/A. Belloche — montaje)
Esa potentísima fuerza de gravedad que parece ubicarse en el centro de todas las galaxias mantiene a las estrellas unidas pero también es una fatal fuerza destructora.
Los científicos están cada vez más cerca de confirmar que todas las galaxias, esencialmente las espirales y elípticas, mantienen sus cientos de miles de millones de estrellas unidas gracias a una potentísima fuerza de gravedad que se ubica en el centro de cada una de ellas.
Es de destacar que las estrellas de las galaxias espirales giran en torno al núcleo de la galaxia, donde se aglutina el mayor número de estrellas por unidad cúbica, pero parece insuficiente que este grupo constituido de millones de estrellas puedan mantener unidas y girando a su alrededor al resto de las estrellas componentes de una galaxia, en algunos casos, como la galaxia elíptica M 87, con más de un billón de estrellas. Hay algo más, justo en el centro de los núcleos de las galaxias que posee una fuerza superior y que además de mantener compacto el núcleo de la galaxia, mantiene estrellas girando a su alrededor a distancias de cientos de miles de años luz (un año luz equivale a 9,6 billones de km).
La galaxia elíptica M87 (también conocida como Galaxia Virgo A, Virgo A, Messier 87, M87, o NGC 4486) es una galaxia elíptica gigante fácil de ver con telescopios de aficionados. Se trata de la mayor y más luminosa galaxia de la zona norte del Cúmulo de Virgo, hallándose en el centro del subgrupo Virgo A.
“Podría tratarse de estrellas “hinchadas” por las condiciones de gravedad extremas en torno a Sagitario A*, el agujero negro super-masivo del centro galáctico. Se han presentado, en la reunión de la Sociedad Astronómica Estadounidense (AAS), los resultados obtenidos sobre tres de estos objetos tras once años de observaciones con el telescopio Keck (Hawaii)”
Nuestra galaxia, la Vía Láctea, mide 100.000 años luz, es como un disco con brazos espirales, muy aplastada y fina, excepto hacia el centro, cuyo bulbo en forma de esfera mide 30.000 años luz de diámetro, pero dentro de esta enorme bola de estrellas viejas, se encuentra el núcleo, aún más denso y compacto, cuyas estrellas se amontonan en espesa multitud, concretamente unos 85 millones de estrellas, que determinó el telescopio de infrarrojos VISTA, un telescopio capaz de atravesar las inmensas nubes de polvo que hay entre nosotros y el núcleo galáctico que es invisible con telescopios ópticos normales. Mientras más nos acerquemos al núcleo galáctico, las estrellas estarán más cerca las unas de las otras.
Estamos en la periferia de la Galaxia, en una región relativamente tranquila, a 27 años luz del centro galáctico. En el interior del Brazo de Orión “abrigaditos” y… ¿seguros?
Cuando comenzaron a formarse las galaxias, algunas estrellas super-masivas comenzaron a agotar su combustible nuclear. Estas estrellas decenas o cientos de veces más masivas que el Sol duran pocos millones de años; el Sol, 10.000 millones de años. Comenzaron a estallar y se convirtieron en brillantísimas supernovas. En todo el Cosmos las supernovas se sucedían y dieron paso a la formación de agujeros negros super-masivos.
La inmensa fuerza de gravedad de estos agujeros negros comenzó a atraer a las estrellas jóvenes en formación o con pocos millones de años de edad. Como si de vórtices se trataran, las estrellas comenzaron a girar alrededor de los agujeros negros, así dice una teoría que se agruparon las estrellas para formar las galaxias.
No es de extrañar. Se han encontrado agujeros negros en los núcleos de casi todas las galaxias, incluso agujeros negros dobles uno girando alrededor del otro. Aquellas galaxias que no suelen contener agujeros negros supermasivos en sus núcleos son galaxias irregulares, cuya estructura amorfa no obedece a las formas bellísimas de las galaxias espirales o elípticas, cuyos agujeros negros les dan la forma.
Los agujeros negros no sólo están en los núcleos de las galaxias, sino en diversas regiones de éstas, aunque estos no suelen ser muy masivos, varias veces la masa del Sol, como el descubrimiento de uno de ellos, de 10 masas solares, en uno de los brazos espirales de la vecina galaxia de Andrómeda, a 2,3 millones de años luz, descubierto gracias a que en ese momento estaba engullendo una estrella emitiendo una poderosa fuente de rayos X. La Vía Láctea posee varios agujeros negros detectados, quizás el más famoso sea Cygnus X-1, un agujero negro de unas 15 masas solares a cuyo alrededor gira una estrella supergigante a la que continuamente roba las capas más externas.
A. N. como sumideros cósmicos
Un agujero negro en una galaxia actúa casi de la misma forma que cuando quitamos el tapón del lavabo y el agua comienza a desaparecer formando una espiral. Los agujeros negros no tragan con tanta rapidez, a pesar de su poderosa fuerza de gravedad, las estrellas están muy distantes y van cayendo poco a poco, mientras que el resto de estrellas sometidas a la fuerza de gravedad del agujero negro super-masivo giran en torno a él esperando su turno.
Los agujeros negros son tan poderosos y dominantes que cuando la materia comienza a caer hacia ellos, se calientan y emiten tanta radiación que equivale a la energía de toda una galaxia de 100.000 millones de estrellas.
Astrónomos europeos tuvieron la ocasión de ver por primera vez cómo un agujero negro de 300.000 masas solares situado en la galaxia NGC 4845 a 47 millones de años luz, arrancaba las capas exteriores de un planeta 15 veces mayor que Júpiter, un planeta errante expulsado de su sistema solar, que ahora gira en torno al agujero negro. Solo el hecho de arrancarle el 10% de la masa puso en alerta a los investigadores, pues se produjo una importante emisión de rayos X.
Grandes emisiones de Rayos X se emiten desde los agujeros negros
El agujero negro super-masivo de nuestra galaxia, de 4,5 millones de masas solares, posee una gran actividad. Prácticamente y a diario, se observan explosiones, aunque no extremas, ello indica que todos los días engulle algo. El telescopio espacial Herchel, ha comprobado que una nube de gas compacta, se dirige hacia nuestro agujero negro y probablemente caiga en él este mismo año. Por otro lado estrellas cercanas al mismo, giran a velocidades de vértigo y serán su próxima comida. El Sistema Solar que se encuentra a 28.000 años luz del agujero negro gira gracias a éste y alrededor de nuestra galaxia a una velocidad de 960.000 km/h.
Los agujeros negros, forman las galaxias, mantienen unidas a sus estrellas, pero a cambio, se nutren de ellas. ¿Será el destino de las galaxias acabar en el interior del agujero negro supermasivo que contienen?
Chandra :: Photo Album :: M87 :: 18 Aug 10
Agujeros negros super-masivos distorsionan las galaxias, y emiten poderosos jets de energía y materia a cientos de miles de años luz de distancia, es el caso del agujero negro de la galaxia M 87 con 3.000 millones de masas solares. M 87 sigue engullendo otras galaxias menores y el agujero negro no para de alimentase. Los astrónomos creen que el límite de un agujero negro puede ser el de una masa de 50.000 millones de soles, es decir, la mitad de la masa de nuestra propia Galaxia. Un agujero negro de estas características no tendría límites y podría absorber una galaxia tranquilamente, por lo que se convertiría en el mayor destructor del Universo.
Pero, ¿Qué es un agujero negro?
Un agujero negro se produce cuando las estrellas muy masivas, a partir de 2,5 veces la masa solar, llegan al final de su vida, se detienen las reacciones termonucleares que hacen que la estrella se expanda y la gravedad se encarga de encoger a la estrella hasta el tamaño de la Tierra (enana blanca), si la gravedad consigue aplastar aún más a la estrella, se convertirá en una estrella de neutrones, del tamaño de una ciudad, donde un cm cúbico pesa millones de toneladas. Pero si no consigue pararse en ese tamaño, se aplastará aún más convirtiéndose en un objeto diminuto, pero con la masa de varias, decenas, cientos o miles de soles.
Ni la luz que viaja a 299458792 metros por segundo puede escapar de su inmensa fuerza de Gravedad y cuando “engulle” materia emite grandes ráfagas de radiaciones de rayos X
Para escapar de la Tierra hace falta una velocidad de 11,2 km/s. Si no conseguimos alcanzarla caeremos otra vez a nuestro planeta. Pero un agujero negro posee tanta fuerza de gravedad, que ni siquiera la luz, que es lo más rápido y que viaja a 300.000 km/s podría escapar del agujero negro. Si nos pudiéramos poner en un agujero negro (vamos a imaginarlo porque no es muy probable) y encender una linterna, veríamos cómo la luz de la linterna intentaría escapar del agujero negro, pero se doblaría y volvería hacia nosotros. Así son los objetos más poderosos del Universo.
Una colisión gigante histórica entre dos agujeros negros ha dado lugar al agujero negro más masivo jamás detectado con ondas gravitacionales.
En la imagen
Interpretación de la fusión binaria de agujeros negros responsable de la señal GW190521. El espacio-tiempo está distorsionado por la señal y las mini cuadrículas de color turquesa y naranja representan los efectos de arrastre debido a los agujeros negros que giran individualmente. El fondo sugiere un cúmulo de estrellas, uno de los posibles entornos en los que podría haber ocurrido GW190521.
FOTOGRAFÍA DE RAÚL RUBIO, VIRGO VALENCIA GROUP, THE VIRGO COLLABORATION
Los agujeros negros hunden el espacio y distorsionan el tiempo. En estudio está que estos objetos sean atajos espaciales que en un futuro nos lleven a lugares muy distantes del Universo sin que apenas pase el tiempo.
Noticia de Prensa
Feb
7
Relaciones energéticas del Sol y la Tierra
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
Mientras en el núcleo del Sol quede suficiente hidrógeno para mantener las reacciones termonucleares, la estrella que nos alumbra inundará la Tierra con radiación solar, que suministra la energía necesaria para mantener la mayoría de los procesos físicos y químicos que se producen en nuestro planeta.
Esta radiación calienta la atmósfera y el océano, genera vientos y lluvias y sostiene el inexorable proceso de la denudación. De todas las conversiones generadas de las energías globales que se producen en la Tierra, las geotectónicas (la lenta modificación del fondo oceánico y de los continentes, acompañada de terremotos y las espectaculares liberaciones energéticas de los volcanes), son las únicas que no proceden de la radiación solar, sino de la gravedad y de la liberación gradual del calor terrestre.
La luz solar también suministra la energía necesaria para la fotosíntesis, la más importante transformación bioquímica, creando nueva biomasa en bacterias, fitoplancton, plantas superiores y, sobre todo, en bosques y praderas. Esta síntesis es el fundamento de la cadena alimenticia necesaria para el metabolismo heterótrofo de animales y personas, a los cuales la nutrición les permite desarrollar actividades que van desde una simple carrera a trabajos más elaborados, como la ocupación laboral y el ocio.
Así de importante es la luz. Las sociedades humanas, desde los pequeños grupos de cazadores o pastores hasta las sociedades más complejas que dependen de los enormes flujos de combustibles fósiles y electricidad, han estado ineludiblemente ligadas al continuo flujo de energía solar y a los almacenamientos energéticos procedentes de la misma.
El proceso de formación de carbón a partir de restos vegetales acumulados en zonas acuáticas y sumergidos, de tal manera que estaban aislados de la atmósfera, sufrieron una transformación por efecto de las bacterias anaeróbicas, que aumentan la concentración de carbono de los azúcares y desprenden gases, como metano y anhídrido carbónico. Así se forma una masa gelatinosa de turba. Posteriormente, ésta se hunde y sobre ella se van depositando nuevas capas. Las más inferiores pueden sufrir transformaciones metamórficas debido a la elevada presión y temperatura que soportan, convirtiéndose en grafito.
Las condiciones biológicas, climáticas y estructurales más favorables para que tenga lugar esta serie de transformaciones se dieron durante el periodo carbonífero, que en Eurasia y Norteamérica se encontraban situadas en posición tropical y cubiertas de grandes bosques próximos al mar, que se inundaron debido a los movimientos verticales causados por la orogenia hercínica. Los yacimientos de carbón de mayor antigüedad proceden del devónico y los más modernos del cuaternario inferior.