viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sí, cosas así nos llevan hacia el futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Historias de la ciencia: Isaac Newton (II) - La Ciencia de la Mula ...

Para no viajar muy atrás en el tiempo, fijaremos el punto de partida en 1687, fecha en que salió a la luz la Obra de Newton, su obra  Philosophiæ naturalis principia mathematica . El tiempo transcurrió hasta 1900, fecha en la que…

Física : Blog de Emilio Silvera V.

Planck publicó un artículo de ocho páginas con su idea del cuanto que sería la semilla que daría lugar al nacimiento de la mecánica cuántica. Aquella idea seminal cambió el mundo de la Física.

“El asunto se quedó ahí hasta que Einstein lo tomó en sus manos en 1905 y le aplicó sus métodos estadísticos. Esto le condujo a otro descubrimiento sorprendente, que interpretado con su inigualable creatividad e intuición física abrió un novedoso terreno a la física. Einstein aplicó su método al estudió de las fluctuaciones de la energía del campo electromagnético contenido en la cavidad estudiada por Planck, es decir, el campo que se vio precisado a cuantizar para alcanzar la descripción correcta del estado de equilibrio. Mostró que si se emplean en estos cálculos los resultados (erróneos) de la física clásica nada particularmente interesante ocurre. Pero que si se emplea la fórmula (extraña, pero correcta) de Planck para apegarse a los resultados experimentales, las fluctuaciones a muy bajas temperaturas (que es la región donde se observan los efectos cuánticos) adquirían precisamente la forma de las fluctuaciones que ocurren ¡en los gases ideales!”

“Analizando otros problemas, entre los que destaca el del efecto fotoeléctrico Einstein llegó a la conclusión de que cuando se analizan los procesos elementales de intercambio de energía entre la materia y el campo, siempre se verifica que el comportamiento del campo tiene aspectos discretos similares al de un gas. Estas observaciones le condujeron a proponer que la manera más simple y general de entender esto consiste en suponer que el campo electromagnético de muy bajas densidades manifiesta una estructura granular, como compuesto de “moléculas” independientes de radiación, cada una de ellas portadora de la energía mínima descubierta por Planck. Estos “paquetes” de radiación de energía definida (cuantos de radiación) corresponden a lo que hoy se denomina fotón.”

Einstein consideró a su artículo sobre los fotones (nombre que fue propuesto varios años después de su descubrimiento) como el único verdaderamente revolucionario de sus trabajos juveniles. Y, en efecto, el papel que jugó esta proposición en el desarrollo ulterior de la teoría cuántica resultó fundamental.

Verdeesperanza: _- Einstein. Por qué destacó como científico ...El año milagroso de Einstein | OpenMind

En 1905, aquel joven de la Oficina de Patentes de Berna (Suiza, sorprendió al mundo de la Física con su Teoría de la Relatividad Especial y sus sorprendentes postulados.

¿Es la luz una onda o una partícula? Einstein respondió

¿Es la luz una onda o una partícula?

Einstein respondió “ambas” y cambió la física para siempre

“Los cinco trabajos que Einstein escribió en 1905 y que publicó en la revista Annalen der Physik tratan sobre problemas relacionados con tres grandes ramas de la física de esa época: la mecánica clásica, el electromagnetismo y la termodinámica, dice Dennis Lehmkuhl, editor científico de Einstein Papers Project, del Instituto de Tecnología de California (Caltech), a BBC Mundo”

El efecto fotoeléctrico – Física cuántica en la red

Por el Efecto Fotoeléctrico, le dieropn el Nobel de Física de 1923

“Analizando otros problemas, entre los que destaca el del efecto fotoeléctrico, Einstein llegó a la conclusión de que cuando se analizan los procesos elementales de intercambio de energía entre la materia y el campo, siempre se verifica que el comportamiento del campo tiene aspectos discretos similares al de un gas. Estas observaciones le condujeron a proponer que la manera más simple y general de entender esto consiste en suponer que el campo electromagnético de muy bajas densidades manifiesta una estructura granular, como compuesto de “moléculas” independientes de radiación, cada una de ellas portadora de la energía mínima descubierta por Planck. Estos “paquetes” de radiación de energía definida (cuantos de radiación) corresponden a lo que hoy se denomina fotón. Es claro que cuando el número de fotones que actúan es suficientemente grande, percibimos el campo como ente continuo; pero tan pronto se reduce el número de fotones a unos cuantos, se manifiesta su estructura discreta.”

“La ecuación E=mc² de Albert Einstein le dio forma a todo el siglo XX”: Christophe Galfard, discípulo de Stephen Hawking

Faraday, Maxwell y lo irreversible de la Transformación Digital ...

Se produjeron muchos desarrollos importantes para nuestras imágenes de la Física Fundamental. Uno de los mayores cambios ocurrido en ese período fue la comprensión, básicamente mediante los trabajos de Faraday y Maxwell en el siglo XIX, de que cierta noción de campo físico, que permea en el espacio, debe cohexistir con la previamente aceptada “realidad newtoniana” de las partículas individuales que interaccionan por medio de fuerzas instantáneas.

Conforme a lo que arriba decimos se producen fenómenos y se ponen en marcha mecanismos que hacen posible que, la imagen que vemos, pueda ser posible gracias a la presencia de fuerzas que, aunque no las podamos ver, su presencia se hace patente por los resultados que en su diversidad, son los mecanismos que llevan el ritmo del Universo que nos acoge.

mxw1fisica

Más tarde, esta noción de “campo” se convirtió también en un ingrediente crucial de la teoría de la Gravedad en un espaciotiempo curvo a la que llegó Einstein en 1915. Lo que ahora denominamos campos clásicos son el Campo Electromagnético de Maxwell y el Campo Gravitatorio de Einstein.

http://www.iac.es/cosmoeduca/relatividad/imagenes/charla3imag/gravedadestira640.jpg

La presencia del campo gravitatorio de una masa afecta al tiempo y al espacio. La gravedad hace que dos relojes atrasen. Un reloj en la superficie de la Tierra atrasa con respecto a un reloj en la Luna, toda vez que el campo gravitatorio de la Tierra es más potente. De la misma manera, nos podríamos preguntar ¿por qué la gravedad actúa sobre el espacio y alarga el tamaño de los objetos (estirándolos). ¿Dónde podríamos crecer más, si viviéramos en la Tierra o en la Luna?

www.lasingularidad.com

La Singularidad, ese “punto” de una densidad “infinita” (ni la luz puede escapar de allí), donde dejan de exisitir el Espacio y el Tiempo.

Pero sigamos. Hoy día sabemos que hay mucho más en la Naturaleza del mundo físico que la sola física clásica. Ya en 1900 -como decimos antes- Max Planck había revelado los primeros indicios de la necesidad de una “teoría cuántica”, aunque se necesitó un cuarto de siglo más antes de que pudiera ofrecerse una teoría bien formulada y global.

La mecánica cuánticaPostulados básicos de la mecánica cuántica - Mi sitio

También debería quedar claro que, además de todos estos profundos cambios que se han producido en los fundamentos “newtonianos” de la física, ha habido otros desarrollos importantes, tanto previos a dichos cambios como coexistentes con algunos de ellos en forma de poderosos avances matemáticos, dentro de la propia teoría newtoniana.

Teoría de la relatividad especial - Wikipedia, la enciclopedia libreLa teoría de la relatividad especial, explicada de manera sencilla

En 1905 un desconocido Albert Einstein publicaría unos espectaculares estudios sobre la teoría de la relatividad, pero muy pocos científicos, entre ellos Planck, reconocerían inmediatamente la relevancia de esta nueva teoría científica. Tanta fue su importancia que incluso Planck contribuyo a ampliarla.

Pero igualmente, la hipótesis de Einstein sobre la ligereza del quantum (el fotón), basada en el descubrimiento de Philipp Lenard de 1902 sobre el efecto fotoeléctrico fue rechazada por Planck, al igual que la teoría de James Clerk Maxwell sobre la electrodinámica.

Solvay: ¿Cuántos puedes reconocer en la foto?] – Con vídeo ...

En 1910 Einstein desafía la explicación de la física clásica poniendo el ejemplo del comportamiento anómalo del calor específico en bajas temperaturas. Planck y Nernst decidieron organizar la primera Conferencia de Solvay, para clarificar las contradicciones que aparecían en la física. En esta reunión celebrada en Bruselas en 1911, Einstein consiguió convencer a Planck sobre sus investigaciones y sus dudas, lo que hizo forjar una gran amistad entre ambos científicos, y conseguir ser nombrado profesor de física en la universidad de Berlín mientras que Planck fue decano.

Translational motion.gif

“Simulación del movimiento browniano que realiza una partícula de polvo que colisiona con un gran conjunto de partículas de menor tamaño (moléculas de gas) las cuales se mueven con diferentes velocidades en direcciones aleatorias”

Otra área importante de avance sobre la que había que llamar la atención es la termodinámica (y su refinamiento conocido como mecánica estadística). Esta estudia el comportamiento de sistemas de un gran número de cuerpos, donde los detalles de los movimientos no se consideran importantes y el comportamiento del sistema se describe en términos de promedios de las magnitudes adecuadas. Esta fue una empresa iniciada entre mediados del XIX y principios del XX, y los nombres de Carnot Clausius, Maxwell, Boltzmann, Gibbs y Einstein son los protagonistas.

Resultado de imagen de TermodinamicaIntroducción a la Termodinamica

Termodinámica.- Parte de la física que estudia las relaciones existentes entre los fenómenos dinámicos y los caloríficos. Trata de la transformación de la energía mecánica en calor y del calor en trabajo. También describe y relaciona las propiedades físicas de sistemas macroscópicos de materia y energía. La termodinámica estudia los sistemas que se encuentran en equilibrio. Esto significa que las propiedades del sistema—típicamente la presión, la temperatura, el volumen y la masa— son constantes.

Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de materia que se puede aislar espacialmente y que coexiste con un entorno infinito e imperturbable. El estado de un sistema macroscópico en equilibrio puede describirse mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables termodinámicas. Es posible identificar y relacionar entre sí muchas otras variables (como la densidad, el calor específico, la compresibilidad o el coeficiente de expansión térmica), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno. Cuando un sistema macroscópico pasa de un estado de equilibrio a otro, se dice que tiene lugar un proceso termodinámico. Las leyes o principios de la termodinámica, descubiertos en el siglo XIX a través de meticulosos experimentos, determinan la naturaleza y los límites de todos los procesos termodinámicos.

¿Cuales son los Principios de la Termodinámica?

Cuando dos sistemas están en equilibrio mutuo, comparten una determinada propiedad. Esta propiedad puede medirse, y se le puede asignar un valor numérico definido. Una consecuencia de ese hecho es el principio cero de la termodinámica, que afirma que si dos sistemas distintos están en equilibrio termodinámico con un tercero, también tienen que estar en equilibrio entre sí. Esta propiedad compartida en el equilibrio es la temperatura. Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste.

Calaméo - TERMODINAMICADefinición de Termodinámica » Concepto en Definición ABC

                 Primer Principio.-

La cantidad de calor entregado a un sistema es igual al trabajo realizado por el sistema más la variación de su energía interna. Cuando un sistema se pone en contacto con otro más frío que él, tiene lugar un proceso de igualación de las temperaturas de ambos. Para explicar este fenómeno, los científicos del siglo XVIII conjeturaron que una sustancia que estaba presente en mayor cantidad en el cuerpo de mayor temperatura fluía hacia el cuerpo de menor temperatura. El primer principio es una ley de conservación de la energía. Afirma que, como la energía no puede crearse ni destruirse —dejando a un lado las posteriores ramificaciones de la equivalencia entre masa y energía— la cantidad de energía transferida a un sistema en forma de calor más la cantidad de energía transferida en forma de trabajo sobre el sistema debe ser igual al aumento de la energía interna del sistema. A veces, el primer principio se enuncia como la imposibilidad de la existencia de un móvil perpetuo de primera especie.

Comunidad Biológica o Biocenosis - Ecosistemas

Flujo de la energía en los ecosistemas. En los ecosistemas se cumplen pues el primer y segundo principio de la termodinámica.

Segundo Principio.-

Segundo principio de la termodinámica (Presentación PowerPoint ...

El segundo dice que solamente se puede realizar un trabajo mediante el paso del calor de un cuerpo con mayor temperatura a uno que tiene menor temperatura. Al respecto, siempre se observa que el calor pasa espontáneamente de los cuerpos calientes a los fríos hasta quedar a la misma temperatura. La segunda ley afirma que la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio. La naturaleza parece pues ‘preferir’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta. El segundo principio impone una condición adicional a los procesos termodinámicos. No basta con que se conserve la energía y cumplan así el primer principio. Una máquina que realizara trabajo violando el segundo principio se denomina “móvil perpetuo de segunda especie”, ya que podría obtener energía continuamente de un entorno frío para realizar trabajo en un entorno caliente sin coste alguno. A veces, el segundo principio se formula como una afirmación que descarta la existencia de un móvil perpetuo de segunda especie.

[espejo.jpg]

Tercer principio de termodinámica o principio onfalóscópico, (mirarse el ombligo): La televisión se retro-alimenta a sí misma. Se hace televisión para hablar sobre televisión.

Tercer Principio.-

Principios termodinámicos

El tercer principio de la termodinámica afirma que el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él.

Ciclos termodinámicos.-

Didáctica en termo: Primera Ley de la TermodinámicaCICLOS TERMODINÁMICOS

CICLO DE ABSORCION POR BROMURO DE LITIO | TEMARIOS FORMATIVOS ...CICLO DE CARNOT | FISICA FLUIDOS Y TERMODINAMICA

Todas las relaciones termodinámicas importantes empleadas en ingeniería se derivan del primer y segundo principios de la termodinámica. Resulta útil tratar los procesos termodinámicos basándose en ciclos: procesos que devuelven un sistema a su estado original después de una serie de fases, de manera que todas las variables termodinámicas relevantes vuelven a tomar sus valores originales. En un ciclo completo, la energía interna de un sistema no puede cambiar, puesto que sólo depende de dichas variables. Por tanto, el calor total neto transferido al sistema debe ser igual al trabajo total neto realizado por el sistema. Un motor térmico de eficiencia perfecta realizaría un ciclo ideal en el que todo el calor se convertiría en trabajo mecánico. El científico francés del siglo XIX Sadi Carnot, que concibió un ciclo termodinámico que constituye el ciclo básico de todos los motores térmicos, demostró que no puede existir ese motor perfecto. Cualquier motor térmico pierde parte del calor suministrado. El segundo principio de la termodinámica impone un límite superior a la eficiencia de un motor, límite que siempre es menor del 100%. La eficiencia límite se alcanza en lo que se conoce como ciclo de Carnot.

CICLO RANKINE | FISICA TERMODINAMICA

  • Gravitación
  • Luz
  • Atracción y repulsión eléctricas
  • Atracción y repulsión magnéticas
La unificación electromagnética - Revista MètodeEinstein y las Teoría de Campos Unificados

Pero sigamos con el objeto principal de este trabajo del que, como siempre me pasa, me he desviado a la termodinámica que ya se dio hace unos días. Aquí hablamos de los “campos clásicos” y, sobre las teorías físicas de campos de Maxwell y Einstein: la física “clásica” ¿Cómo pudieron hablar y describir a la perfección sucesos que el ojo no podía ver, y, simplemente con la imaginación, lo hicieron posible, hasta tal punto que, cuando hablamos de campos electromagnéticos o gravitatorios, en nuestras mentes se instalan las imágenes de unos y otros que podemos “ver” con toda precisión.

Electromagnetismo - Wikipedia, la enciclopedia libre

La teoría del electromagnetismo desempeña también un papel importante en la teoría cuántica, pues proporciona el “campo” arquetípico para el desarrollo posterios de la teoría cuántica de campos. Por el contrario, el enfoque cuántico apropiado del campo gravitatorio sigue siendo eninmático, escurridizo y controvertido y, abordar ahora aquí estas complejas cuestiones, seguramente daría lugar a explicaciones farragosas debido a mi ignorancia profunda en esos conocimientos y a la levedad de los que puedo poseer.

Electromagnetismo - Fisicalandia

Los campos de fuerza de Faraday han dado lugar a que, la imaginación se desboque y corriendo hacia el futuro, haya imaginado inmensas ciudades que, situadas en lugares imposibles, sostienen sin problema a sus habitantes que, resguardados por un “campo de fuerza” están al resguardo de cualquier peligro que del exterior les pueda venir.

Fundamentos de Física Moderna RELATIVIDAD ESPECIAL - ppt descargar

Por ahí arriba me refería al hecho de que ya en el siglo XIX se había iniciado un cambio profundo en los fundamentos en relación a fundamentos de  las revoluciones de la relatividad y la teoría cuántica en el siglo XX. El primer indicio de que sería necesario un cambio semejante se produjo con los maravillosos descubriumientos experimentales de Faraday hacia 1833, y de las representaciones de la realidad que encontró necesarias para acomodar dichos descubrimientos. Básicamente, el cambio fundamental consistió en considerar que las “partículas newtonianas” y las fuerzas” que actúan entre ellas no son los únicos habitantes de nuestro universo.

A partir de ahí había que tomar en serio la idea de un “campo” con una existencia propia incorpórea. Y, fue entonces cuando se produjo la providencial llegada de Maxwell que, al contrario de Faraday, él si entendía bien el complejo mundo de las matemáticas y, en 1864, formuló las ecuaciones que debe satisfacer este “campo” incorpóreo, y quien demostró que estos campos pueden transportar energía de un lugar a otro.

Fundamentos de Física Moderna RELATIVIDAD ESPECIAL - ppt descargar

                     ¿ Transmutando energía?

Las ecuaciones de Maxwell unificaban el comportamiento de los campos eléctricos, los campos magnéticos e incluso la luz, y hoy día son conocidas como las ecuaciones de Maxwell, las primeras entre las ecuaciones de campo relativistas. Desde la perspectiva del siglo XX se han hecho profundos cambios y se ha producido profundos avances en las técnicas matemáticas, las ecuaciones de Maxwell parecen tener una naturalidad y simplicidad concincentes que nos hacen preguntarnos cómo pudo considerarse alguna vez que el campo electromagnético pudiera obedecer a otras leyes.

1865. Las ecuaciones de Maxwell transforman el mundo | Ciencia ...

Pero semejante perspectiva ignora el hecho de que fueron las propias ecuaciones de Maxwell las que llevaron a muchos de estos desarrollos matemáticos. Fue la forma de estas ecuaciones la que indujo a Lorentz, Poincaré y Einstein a las transformaciones espaciotemporales de la relatividad especial, que, a su vez, condujeron a la concepción de Minkowaki del espaciotiempo.

¡La Mente Humana! ¿Hasta donde podrá llegar? ¿Qué limite tendrá impuesto? La respuesta es sencilla: ¡No hay límites! Y, aunque dicha afirmación la repita en muchos de mis escritos, y, aunque a algunos les parezca un sueño…, esa es,  la realidad.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


Los agujeros negros se relacionan con los bulbos de las galaxias que los alojan, pero no lo hacen con los discos galácticos, los pseudobulbos o los (supuestos) halos de “materia oscura”. Así lo afirman dos estudios liderados desde la Universidad de Texas en Austin (EE UU) que fue publicado en Nature.

Dibujo20140426 The Milky Way dark-matter halo - CERN Courier - La ...

“Nuestro resultado más sorprendente ha sido encontrar que los agujeros negros supermasivos no están relacionados con los pseudobulbos”, destaca a SINC John Kormendy, profesor del departamento de Astronomía de la universidad de Texas de Austin (EE UU) y coautor de los dos artículos publicados en Nature.

Descubren agujeros negros supermasivos a punto de chocar en el ...Agujero negro supermasivo - Wikipedia, la enciclopedia libre

Se considera que los agujeros negros supermasivos se encuentran en el centro de la mayoría de las grandes galaxias, y que sus masas se relacionan con los componentes del bulbo (región central llena de viejas estrellas) de sus galaxias anfitrionas.

Los investigadores han usado nuevas observaciones de las dispersiones de velocidad en las galaxias para investigar si la masa del agujero negro también se correlaciona con los pseudobulbos (bulbos que se parecen a las galaxias de disco más que a las elípticas).

Los resultados del primer estudio reflejan que los agujeros negros no se relacionan en absoluto con los discos y se correlacionan muy poco o nada con los pseudobulbos.

¿Cómo crece un agujero negro?

http://achipec.files.wordpress.com/2010/08/20070907blackholeov6.jpg

Los autores también sugieren dos métodos distintos de “alimentación” del agujero negro, dependiendo de si éste se encuentra en un bulbo o si está alojado en una galaxia con pseudobulbo o sin bulbo.

La formación de galaxias podría estar controlada por agujeros ...

“Ya conocíamos que el crecimiento de los agujeros negros se producía por fusiones, que originan la suficiente energía como para que el agujero negro y la galaxia crezcan juntos”, señala Kormendy.

Lo que la fusión de varias galaxias con agujeros negros dice sobre ...

En el segundo método el agujero neo “come” el gas que se aproxima por procesos de azar como las colisiones de nubes de gas o el que lo atraviesa. En este caso el agujero negro unca produce la suficiente energía como para influir en el conjunto de la galaxia.

“Desconocíamos que estas dos formas de crecimiento fueran tan diferentes”, recalca el investigador.

Una relación más sencilla

Los autores plantean en un segundo artículo que casi no hay correlación entre los agujeros negros y los halos de materia oscura, a menos que la galaxia también contenga un bulbo.

“La relación entre agujeros negros y galaxias es mucho más simple y sencilla de lo que imaginábamos”, afirma el científico, que destaca: “Todas las galaxias tienen materia oscura, pero en ausencia de bulbo ésta no controla el crecimiento del agujero negro”.

Kormendy concluye: “Se pensaba que nunca seriamos capaces de comprender el crecimiento del agujero negro hasta que descubriéramos la naturaleza de la materia oscura, porque los dos están conectados. Ahora ya no tenemos que preocuparnos de tener que comprender en detalle la materia oscura para estudiar el crecimiento de los agujeros negros y la convolución de estos con las galaxias”.

Agujeros negros supermasivos crecen más rápido que sus galaxias ...

Los científicos continuarán con esta línea de investigación, que ha contado con el apoyo de la National Science Foundation, pero se centrarán más en las propiedades de las galaxias huésped que en del descubrimiento de nuevos agujeros negros.

Referencia bibliográfica: John Kormendy, Ralf Bender y M. E. Cornell. “Supermassive black holes do not correlate with galaxy disks or pseudobulges”. John Kormendy y R. Bender. “Supermassive black holes do not correlate with dark matter haloes of galaxies Nature. 19 de enero de 2011. Doi: 10.1038/nature09694 y 09695.

FUENTE: SINC

Abundancia Cósmica de los Elementos

Autor por Emilio Silvera    ~    Archivo Clasificado en Los Elementos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Manuscrito de Einstein con la fórmula de la Relatividad. Cuando se dio a conocer al mundo, los excepticos pusieron en duda todo lo que de ella se podía derivar, implicaciones  de fenómenos desconocidos hasta ese momento que resultaban extraños o incluso inauditos.

 

Qué es la masa?Momento de inercia - Física de nivel básico, nada complejo..

 

La masa de un objeto es una propiedad fundamental del objeto; es una medida numérica de su inercia; una medida fundamental de la cantidad de materia en el objeto. … El peso de un objeto es la fuerza de la gravedad sobre el objeto y se puede definir como el producto de la masa por la aceleración de la gravedad, w = mg.

Moment of Inertia

 

En física, la inercia  es la propiedad que tienen los cuerpos de permanecer en su estado de reposo relativo o movimiento relativo. Dicho de forma general, es la resistencia que opone la materia al modificar su estado de movimiento, incluyendo cambios en la velocidad o en la dirección del movimiento.

ABUNDANCIA CÓSMICA DE ELEMENTOS

 

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

Origen y evolución del UniversoOrigen y evolución del UniversoCiencias para el mundo contemporáneoNUPEX

La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

Los isótopos - Angel FIQCONTENIDOS DE LA UNIDAD - Ambito C-T IES Bernardino Escalante

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

Origen y evolución del UniversoTEMA 1 ASTRONOMÍA. - ppt descargar

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

para Niños Adulto Juguete Regalo Puzzle La Gran Nebulosa De Orión ...

      Me gusta la Gran Nebulosa de Orión. Elementos y materia que forman nuevas estrellas y nuevos mundos situados en sistemas planetarios que, dentro de algunos miles de millones de años, en elguno de esos planetas nuevos, podría  surgir la vida.

 

ESA - Estrellas embrionarias titilan en el corazón de OriónUna ráfaga cósmica permite acercarse a la 'materia perdida' del ...Hermosos GIFs del espacio y el universo. 100 imágenes animadasDescubren un enorme “puente” que conecta dos cúmulos de galaxias a ...

  FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.

Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nebulosas de “Orión” y “Trifidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:

[Espada+de+Orion.jpg]

‑ Su uniformidad de composición.

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

                                      Las estrellas se forman a partir del gas y el polvo de las Nebulosas

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

Fred Hoyle

                           Sir Fred Hoyle

No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiermpo”. En aquel momento, no estaba falto de razón.

Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “arbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.

El Sol como gigante roja

          El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después

Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

Formación de elementos en los interiores estelaresElementos en las estrellas | DcienciaUna superpoblación de estrellas masivas en galaxias con una ...

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamerciano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

                                         Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Nucleosintesis by Juan Jose Saenz on Prezi NextNucleosíntesis

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubrior qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residetente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran excépticos ingleses en la relativo al big bang.

Revelan efectos de pruebas nucleares de EEUU en Islas Marshall ...

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, suguramente los elementos situados entr el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

                                                   Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio. Los elemetos más complejos surgen a partir de las explñosiones Supernovas.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

El origen de los elementos : Blog de Emilio Silvera V.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

Lista: ☼☼☼Las 25 estrellas más brillantes del firmamento☼☼☼

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia éscribió Hoyle, Fwler y los Burbidge_…está oculta en la distribuciíon de la anundancia de elementos”

Teoría del Big Bang y Elementos del Universo

                  En el Big Bang: Hidrógeno, Helio, Litio.

Clasificacion De Estrellas Lonnie Pacheco

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

El Baúl de la Astronomía: ESTRELLAS MORIBUNDASLa NASA captura el último aliento de una estrella moribunda ...

En las estrellas moribundas: Sodio, Manesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habéis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

Imágenes para pensar del Universo II. - Página 43 - ForoCoches

   En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:

Amigos míos, son las 5,40 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

emilio silvera

¿Una guía para descubrir? ¡La simetría!

Autor por Emilio Silvera    ~    Archivo Clasificado en Simetrías    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una guía para descubrir? ¡La simetría! : Blog de Emilio Silvera V.

               La simetría esférica del planeta Marte

La simetría es una propiedad universal tanto en la vida corriente, desde un punto de vista matemático como desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común.

Diccionario - Simetría | PortalPez, acuarios, mascotas, peces ...Los animales. Reino animales. Su clasificación. 1 TEMA 10: Los ...

Taxonomía y características de los seres vivosLos expedientes Occam: Simetrías y seres vivos

En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos esta concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más.

Inclinación del eje de rotación de los planetas - AstroAficionM45: el cúmulo de estrellas de las Pléyades |

Galaxias espirales al descubierto | ESO EspañaSupernovas, definición y clasificación.

Cuando miro en mi diccionario de Física la palabra Simetría, lo que me dice es: “Conjunto de invariancias de un sistema. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas. Las simetrías pueden ser discretas (es decir, cuando hay un número finito de transformaciones de simetría), como el conjunto de rotaciones de una molécula octaédrica, o continuas (es decir, cuando no hay número finito), como el conjunto de rotaciones de un átomo o núcleo. Existen simetrías más generales y abstractas, como la invariancia CTP y las simetrías asociadas a las teorías gauge.”

                              El Universo está lleno de simetrías por todas partes

También podemos hablar de simetría rota y de supersimetrías. Durante los últimos tiempos, los Físicos han elevado los principios de simetría al más alto nivel en la escala de lo que podemos entender por una explicación. Cuando encontramos una Ley propuesta de la Naturaleza, una pregunta se nos viene a la mente: ¿por qué esta ley? ¿Por qué la relatividad especial y la general? ¿Por qué el electromagnetismo de Maxwell? ¿Por qué las teorías de Yang-Mills de las fuerzas nucleares fuerte y débil? Claro que, una respuesta de importancia es que, las teorías hacen predicciones que han sido repetidamente conformadas con precisos experimentos, con diversidad de científicos y lugares y que, siempre, en todos los casos, dieron el mismo resultado. Esto, por supuesto, es la base de la confianza esencial que los físicos tienen en esas teorías.

La constelación y el signo de Escorpio ⋆ Comprarunaestrella.comCómo ver las constelaciones en el cielo: la guía definitiva - 88 ...

LAS 10 CONSTELACIONES MAS USADAS POR LOS NAVEGANTES | Astrologia ...Constelaciones de primavera del hemisferio norte - Enciclopedia ...

Constelaciones

Claro que, se deja fuera algo esencial: Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar entre las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.

 

Ilustración Explosión Nuclear. Hongo Atómico. Imagen En Color ...Hongo atomico | Hongos de Chile

estatua de la libertad, hongo atómico, bomba atómica, armas ...El 'hongo atómico' que puso a temblar a la ciudad de Pekín (Fotos ...

Los hongos atómicos también guardan cierta simetría

 

Así que las simetrías de la Naturaleza no son meras consecuencias de las leyes de la Naturaleza. Desde nuestra perspectiva moderna, las simetrías son la base de la que manan las leyes y, siendo así (que lo es), cuando un físico observa una simetría, agudiza su atención, ya que, allí, en aquel lugar, podría encontrarse alguna ley de la Naturaleza que siguiendo aquella presencia, se podría descubrir.

 

La Entropía lo destruye todo : Blog de Emilio Silvera V.La Entropía lo destruye todo : Blog de Emilio Silvera V.

SEMINARIO 2: Videoforum “El paso del tiempo” | Rocío Moreno NavarroCon 1.702 años, así miman al olivo más grande de España | Ideal

 

Más allá de su papel en dar forma a las leyes que gobiernan las fuerzas de la Naturaleza, las ideas de simetría son vitales para el propio concepto del tiempo. Nadie ha sabido encontrar todavía definición fundamental y definitiva del tiempo. Sin embargo, es indudable que el papel del tiempo en la constitución del cosmos es llevar una especie de registro de los sucesos y acontecimientos que en el universo ocureren: Nace una estrella, se forma una nueva galaxia, explota una supernova, muere una estrella masiva y surge un agujero negro

 

Sí, todos fuímos jóvenes y el paso del tiempo nos transformó en más viejos pero, no por ello más sabios. Eso sí, con algo más de experiencia y más prudentes a la hora de decidir sobre las cosas importantes que siempre, aunque de joven no le prestemos atención, trae consecuencias.

Reconocemos el transcurrir del tiempo al mirar y ver que, las cosas, no son iguales hoy que lo fueron ayer. Con el transcurrir del tiempo todo cambia y nada permanece. ¿Será el tiempo otra simetría? Debe serlo, ya que, ningún cambio le afecta y, su transcrrir queda inalterado por mucho camino que pudiera haber recorrido y, eso, lo hace diferente de todo lo demás: Todo cambia excepto el tiempo.

La simetríaLa ruptura espontánea de la simetría electrodébil y el bosón de ...

XI Carnaval de la Física: El neutrino y la violación de la ...FisQuiWeb. Premios Nobel.

Así, tenemos que llegar a la conclusión de que, el concepto de simetría es, para los Físicos, indispensable como punto de referencia en el descubrimiento de las teorías que más tarde, llegan a convertirse en leyes de la Naturaleza al comprobarse que, son inalterables: Otra vez la Simetría. El desarrollo de la moderna teoría cosmológica, por ejemplo, tiene mucho que ver con la simetría. El signioficado del Tiempo, su aplicabilidad al universo en su conjunto, la forma global del espacio, e incluso el marco subyacente de la relatividad especial, todo descansa sobre fundamentos de simetría.

 

 

Durante el último siglo un concepto muy importante en Física, sobre todo en Mecánica Cuántica, ha sido y es el de simetría. Uno de los resultados más bonitos de la Física dice que allá donde hay una simetría hay una cantidad conservada. Es lo que se llama teorema de Noether. De este modo, las leyes de la Física pueden ser iguales bajo una u otra simetría y para cada uno de esos casos se conservará algo. Así por ejemplo, la simetría de traslación temporal corresponde a una cantidad conservada: la energía. También ocurre que las leyes de la física son las mismas bajo unas transformaciones de rotación en el espacio tridimensional y eso significa que se conserva el momento angular.

Allí donde veamos presente la simetría, debemos prestar atención, ya que, podría ser el indicio de que algo importante se podría derivar de esa simetría presente que, en física, como hemos comentado, es un principio de gran importancia.

La simetría puede estar en todas partes y, si nos fijamos bien, en nuestra vida cotidiana, estamos rodeado de ella. En este universo nuestro, casi todo está implicado con cierta dosis de simetría que, por otra parte, nos viene a decir que, en un universo que gira sobre sí mismo, es lógico que pensemos que todo lo que contiene, se comporte de la misma manera.
emilio silvera

El Universo siempre misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Es viejo el Universo?

Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuántos años tiene el universo?

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Biología, estrellas, unidades naturales…, !Universo¡ : Blog de ...

Big Bang models back to Planck time

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Captan restos de un estallido de rayos gamma, un hecho insólito ...Cómo son los eventos más energéticos (y mortales) del Universo?

A lo menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.

Un grupo de astrónomos ven el grupo de galaxias más lejano jamás ...

La edad actual del Universo visible ≈ 1060 tiempos de Planck

Infobservador: ¿Que tamaño tiene el Universo?

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

4.La Teoría del Universo Inflacionario - Explorando el conocimiento

La masa actual del Universo visible ≈ 1060 masas de Planck

Density Parameter, OmegaDensidad Crítica : Blog de Emilio Silvera V.

Vemos así que la baja densidad de materia en el Universo es un reflejo del hecho de que:

La Densidad actual del Universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto

La Temperatura actual del Universo visible ≈ 10-30 de la Planck

{\displaystyle T_{P}={\frac {m_{P}c^{2}}{k}}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}}

“Si, existe. Se trata de una temperatura inconcebiblemente alta llamada Temperatura de Planck, una de esas curiosidades científicas que no sirven realmente de mucho. El universo tenía esa temperatura durante el primer instante de Planck tras el Big Bang (10^-43 de segundo), y hablamos de 10^32 Kelvin.”

Así pues, la Temperatura de Planck es el límite calórico superior que se puede alcanzar.

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

Descubren los agujeros negros más masivos del UniversoCuál es el objeto más grande del universo conocido

Descubren el objeto más grande de todo el Universo y eso desata ...Las estrellas masivas, más abundantes de lo que se pensaba ...

En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.

¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.

Espacio intergaláctico - YouTube

Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

ESTRELLAS - Sistema solar

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

La diversidad de la vida y su clasificación - 1º Bachiller ...

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.

Credit: Emily Lakdawalla/Ted Stryk

La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).

Cometa GIF | Gfycat

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.

emilio silvera