jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La rotura de la simetría CP

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para verlas?

Leer más

La Física nos dará todas las respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Roger Penrose afirma que, algunas de las afirmaciones de más peso, pueden ser descartadas (tal es el caso de la teoría de cuerdas ha proporcionado una teoría completa y consistente de la gravedad cuántica).  En mi modestia, estoy totalmente de acuerdo con él, y, según lo poco que sé al respecto me hace pensar que, la teoría de cuerdas, es una firme candidata para llegar a esa teoría cuántica de la gravedad, aunque de momento, le queda inalcanzable.

No obstante, sería injusto no admitir que parece habar algo de auténtica trascendencia “entre bastidores” en algunos aspectos de la teoría M de cuerdas.

Claro que, podría resultar que ese “algo” sea de interés puramente matemático, sin que haya ninguna razón real para creer que nos acerca más a los secretos de la naturaleza.

La teoría M de cuerdas es una teoría muy adelantada a su tiempo, incluso las matemáticas necesarias para desarrollarla al completo, nos son desconocidas.  Por otra parte, como me he cansado de escribir en otros trabajos anteriores, la energía necesaria para verificarla, no está a nuestro alcance.

Leer más

Vesalio, aquel gran hombre.

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

De los Animales al Hombre

Andreas Vesalio (1514-1564), sin ser un genio universal, no dejo que nada le hiciera olvidar su principal interés. Nació junto a las murallas de la ciudad de Bruselas, desde donde se divisaba el monte en el que los criminales condenados eran torturados y ejecutados. De niño seguramente vio con frecuencia los cuerpos, que permanecían colgados hasta que las aves de presa dejaban los huesos limpios. Su padre era boticario del emperador Carlos V y la familia era bien conocida entre la profesión médica. A diferencia de Paracelso, Vesalio recibió la mejor educación médica que se podía obtener en su época. Se matriculó en la universidad de Lovaina en 1530, luego fue a la universidad de París, donde estudió con el profesor Silvio, renombrado defensor de Galeno. Cuando estalló la guerra entre Francia y el Sacro Imperio Romano, Vesalio, un extranjero enemigo, fue expulsado de París y hubo de regresar a Lovaina. Allí se licenció en medicina en el año 1537; luego se marchó a Papua, donde estaba la escuela de medicina de más prestigio en Europa. En Papua se sometió a dos días de exámenes y recibió el título de doctor en medicina magna cum laude. Debía de ser muy versado en el saber convencional, pues, a los veintitrés años, dos días después de pasar el examen, trabajaba ya en la cátedra de cirugía de aquella universidad.

Leer más

Srinivasa Ramanujan

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Srinivasa Ramanujan nació en 1.887 en Erode, India, cerca de Madrás.  Su familia de clase media alta, brahmin, la más alta de las castas hindúes, fueron destituidos y venidos a menos. Su padre trabajaba de oficinista de un comerciante de tejidos.

Con diez años, lo mismo que pasó antes con Riemann, ya destacaba y sorprendía a todos con sus enormes poderes de cálculos. Siendo niño rederivó la identidad de Euler entre funciones trigonométricas y exponenciales.

En la vida de cada científico joven hay un punto de partida, un hecho que, sin ellos saberlo, les marca el destino. Para Einstein fue la fascinación que le causó la brújula que le regaló su tío cuando estaba enfermo siendo un niño, no podía apartar la mirada de la aguja que siempre indicaba hacia el mismo sitio, y se preguntó una y mil veces por la fuerza invisible que la obligaba a dirigirse hacia esa dirección. Para Riemann, fue la lectura del libro de matemáticas de Legendre. Para Ramanujan, fue cuando se sumergió en un oscuro y olvidado libro de matemáticas escrito por George Carr. Este libro ha quedado inmortalizado desde entonces por el hecho de que señaló la única exposición conocida de Ramanujan a las modernas matemáticas occidentales. Según su hermana: “Fue este libro el que despertó su genio. Él se propuso establecer por sí mismo las fórmulas dadas allí. Como no tenía la ayuda de otros libros, cada solución era un trabajo de investigación por lo que a él concernía… Ramanujan solía decir que la diosa Namakkal le inspiraba las fórmulas en sueños“.

Leer más

¿Qué son las estrellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No tiene ningún sentido explicar, sin más, lo que es un agujero negro, sin que antes explique algo sobre las estrellas que, en definitiva, son las que dan el origen de estos fenómenos cosmológicos conocidos como agujeros negros, estrellas enanas blancas, etc.

Las estrellas, enormes bolas de gas y polvo luminosas que desde su nacimiento producen energía por la fusión nuclear del hidrógeno para formar helio. El término, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como las estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares más complejos que el hidrógeno, o las enanas blancas y las estrellas nucleares, que están formadas por combustibles nuclear gastado.

La masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima está calculada en 0’80 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones. Las luminosidades de estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de una milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

Las estrellas brillan como resultado de la conversión de masa en energía por medio de reacciones nucleares, siendo las más importantes las que involucran al hidrógeno. Por cada kilogramo de hidrógeno quemado de esta manera, se convierte en energía aproximadamente siete gramos de masa (el 7 ‰). De acuerdo a la famosa ecuación E = mc2, los siete gramos equivalen a una energía de 6’3×1014 julios. Las reacciones nucleares no sólo aportan el calor y la luz de las estrellas, sino que también producen elementos más pesados y complejos que el hidrógeno y el helio.

Estos elementos pesados y más complejos (litio, carbono, oxígeno, etc) han sido distribuidos por el espacio, de tal manera que están presentes por todo el universo mediante explosiones de supernovas o por medio de nebulosas planetarias y vientos estelares.

De hecho, nuestra presencia aquí sería imposible sin que el material del que estamos hecho (polvo de estrellas), no se hubiera fabricado antes en alguna estrella lejana, hace miles de años y seguramente a muchos años luz de nuestro sistema solar.

Las estrellas se pueden clasificar de muchas maneras. Una manera es mediante su etapa evolutiva: en presencia principal, secuencia principal, gigante, supergigante, enana blanca o estrella de neutrones y, para las más masivas, su evolución hasta agujeros negros.

También se clasifican por sus espectros, que indica sus temperaturas superficiales. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor de edad. También se clasifican por el método conocido como evolución estelar.

La cantidad de estrellas conocidas en su variedad por uno u otro motivo, es en realidad muy abundante, como por ejemplo:

Estrella binaria, estrella “capullo”, de baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, estrella de bario, estrella de bariones, estrella de campo, estrella de carbono, de circonio, de estroncio, de helio, de población I extrema, de población intermedia, estrella de la rama gigante asintótica, de litio, de manganeso, de manganeso-mercurio, de mercurio-manganeso, de metales pesados, de neutrones, de quarks, de referencia, de silicio, de tecnecio, de tipo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estrella estándar, evolucionada, etc, etc.

Por ser para nosotros la más importante de todas, hablaré un poco de nuestra estrella más cercana, esa que hace posible la vida en el planeta Tierra al que envía luz y calor, el Sol.

Nuestro Sol, a pesar de su diámetro de 1.392.530 Km, su enorme masa de 1’989×1030 Kg, su volumen de 1’3×106, etc, es en realidad una simple estrella común mediana, clasificada como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K (tipo espectral G2) y una enana de la secuencia (clase de luminosidad V). El Sol está formado en su mayor parte por hidrógeno (71% en masa), con otra parte de helio (27%) y elementos más pesados (el 2%). Su edad se estima que es de unos 4.600 millones de años.

En su horno termonuclear fusiona, de manera constante y cada segundo, 4.654.000 toneladas de hidrógeno, en 4.650.000 toneladas de helio, 4.000 toneladas son lanzadas al espacio en forma de luz y calor, de lo que una parte llega al planeta Tierra. La transferencia de energía desde el núcleo hasta la superficie tarda 10 millones de años. En su centro la temperatura se calcula que es de 15’6 millones de ºK y la densidad de 148.000 Kg/m3.

Existen otras curiosidades de luminosidad, magnetismo, viento solar, etc, que alargaría mucho el tema que aquí se trata. La vida del Sol está estimada en otros 4.000/4.500 millones de años más antes de que se convierta en gigante roja, explote y quede finalmente como enana blanca.

emilio silvera