viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Se encontrará el Bosón de Higgs, en eso que llamamos...

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Matematicas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No son pocos los que postulan que el vacío es superconductor. Fueron el belga Franςois Englert, el americano Robert Brout y el inglés Peter Higgs los que descubrieron que la superconductividad podría ser importante para las partículas elementales. Propusieron un modelo de partículas elementales en el cual partículas eléctricamente cargadas, sin espín, sufrían una condensación de Bose. Esta vez, sin embargo, la condensación no tenía lugar en el interior de la materia sino en el vacío. Las fuerzas entre las partículas tenían que ser elegidas de tal manera que se ahorrara más energía llenando el vacío de estas partículas que dejándolo vacío. Estas partículas no son directamente observables, pero podríamos sentir este estado, en cuyo espacio y tiempo están moviéndose las partículas de Higgs (como se las conoce ahora) con la mínima energía posible, como si el espacio tiempo estuviera completamente vacío.

Las partículas de Higgs son los cuantos del “campo de Higgs”. Una caracterísitca de ese campo es que su energía es mínima cuando el campo tiene una cierta intensidad, y no cuando es nulo. Lo que observamos como espacio vacío no es más que la configuración de campo con la menor energía posible. Si pasamos de la jerga de campo a la de partículas, esto significa que el espacio vacío está realmente lleno de partículas de Higgs que han sufrido una “condensación de Bose”.

Este espacio vacío tiene muchas propiedades en común con el interior de un superconductor. El campo electromagnético aquí también es corto de alcance. Esto está directamente relacionado con el hecho de que, en tal mundo, el fotón tiene cierta masa en reposo.

Leer más

La Física y la Ciencia en general = Futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Matematicas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Qué sería de la cosmología actual sin aquella maravilla surgida de una mente humana? Me refiero a la ecuación de Einstein de la relatividad general donde  se denota el tensor energía-momento que mide el contenido de materia-energía, mientras que, por otra parte,  se reseña el Tensor de curvatura de Riemann que nos dice la cantidad de curvatura presente en el hiperespacio.

La cosmología estaría 100 años atrás sin esta ecuación.

Los físicos teóricos realizan un trabajo impagable. Con imaginación desbordante efectúan continuamente especulaciones matemáticas referidas a las ideas que bullen en sus mentes. Claro que, de tener éxito, no sería la primera vez que descubrimientos teóricos en la ciencia física terminan dando en el claro y dejando al descubierto de manera espectacular lo que realmente ocurre en la naturaleza. Los ejemplos son muchos:

  • Planck, con su cuanto de acción, h, que trajo la mecánica cuántica.
  • Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares. Además, nos dijo la manera de conseguir que el tiempo transcurriera más lentamente  y nos avisó de la existencia de agujeros negros.
  • Heisemberg nos abrió los ojos hacia el hecho de que nunca podríamos saberlo todo al mismo tiempo, su Principio de Incertidumbre dejó al descubierto nuestras limitaciones.
  • Schrödinger, con su función de onda probabilística, que por medio de una ecuación matemática nos ayuda a encontrar la situación de una partícula.
  • P. Dirac, el físico teórico y matemático que predijo la existencia de la antimateria. Poco después de publicar su idea, descubrieron el positrón.

Así podríamos continuar elaborando una lista interminable de logros científicos que comenzaron con simples especulaciones deducidos de la observación sumada a la imaginación.

Uno de los problemas ligados a las supercuerdas y que más resalta es el que tiene que ver con la propia pequeñez de las cuerdas, esos infinitesimales objetos vibrantes. Mientras más pequeño es algo, más difícil es de ver. Estas cuerdas son tan pequeñas que nuestra actual tecnología no es suficiente para bajar a esa escala microscópica para permitirnos experimentar en esas dimensiones; la energía necesaria para ello (como ya dije antes) no está a nuestro alcance en el mundo actual. Esa es la frustración de sus creadores y adeptos; no pueden demostrarla o ver si están equivocados. En la ciencia, no basta con sólo una bonita teoría bien elaborada y de fascinante presencia; hay que ir más allá, experimentar y comprobar con certeza lo que nos está diciendo.

Leer más

Comentario Breve de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Matematicas    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Posiblemente, el descubrimiento de las leyes de la mecánica cuántica habría requerido más de un cuarto de siglo se la propia naturaleza no hubiera ayudado “regalándonos” la simplicidad del átomo de hidrógeno. Su espectro tiene la regularidad necesaria que permitió a Bohr empezar a comprenderlo a partir de las embrionarias ideas de Planck y de Einstein (uno con su cuanto de acción, h – la radiación de cuerpo negro –, y el otro con su trabajo inspirado en el anterior, y que versó sobre el efecto fotoeléctrico).

Si el átomo más elemental no constituyera un sencillo sistema “integrable” de dos cuerpos, la complejidad de su espectro hubiera retrasado el progreso hacia la física cuántica. Lo mismo puede decirse de la sencillez del sistema sol-planeta y del descubrimiento de las leyes de Kepler, que facilitaron enormemente el posterior descubrimiento de Newton y de la Ley de la Gravitación Universal, y la génesis de la ciencia moderna.

Por el contrario, la unificación de la mecánica cuántica con la gravitación, uno de los retos científicos fundamentales, no parece, al menos por el momento, que esté agraciada con la misma suerte.

La escala natural en la que la gravedad y la física cuántica se mirarían de igual a igual, viene dada por la longitud de Planck, , pero ésta resulta ser extraordinariamente pequeña, del orden de 10-33 cm, o en términos de masa-energía, , 10-8 g aproximadamente, o Ep = Mpc2 ≈ 1019 GeV. Esta masa está muy por encima de las masas de las partículas elementales y la energía muy lejos de las energías que pueden alcanzarse en varias generaciones venideras de los aceleradores.

El efecto físico más importante donde se combina la relatividad general  y la mecánica cuántica es el que descubrió Hawking en 1974. Los agujeros negros, en la teoría puramente clásica de la relatividad de Einstein, se comportan como objetos que absorben materia pero que no permiten dejar escapar nada de ella más allá del llamado horizonte de sucesos. Pero cuando la materia es tratada según la teoría cuántica, el agujero negro pasa a ser necesariamente emisor de radiación térmica.

Leer más

Viaje hacia la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Matematicas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Velocidades inimaginables

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.

Leer más

¿Alcanzaremos la energía de Planck?

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Matematicas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hasta la fecha, el rayo cósmico más energético detectado tenía una energía de 1020 electrón voltios. Esta cifra supone una increíble energía diez millones de veces mayor de la que se habría producido en un acelerador de partículas. Dentro de este siglo, seguramente será difícil alcanzar, con nuestras máquinas energías aproximadas.

Aunque esta fantástica energía es todavía cien millones de veces menor que las energías necesarias para sondear la décima dimensión, se espera que energías producidas en el interior profundo de los agujeros negros en nuestra galaxia se acercaran a la energía de Planck.

Con grandes naves espaciales en orbita, deberíamos ser capaces (seremos) de sondear en lo más profundo de estas estructuras gigantescas de fuentes energéticas que, abundantemente, están repartidas a lo largo y ancho del Universo.

Según una teoría favorita, la mayor fuente de energía dentro de nuestra Galaxia (mucho más allá de cualquier cosa imaginable), está en el mismo corazón de la Vía Láctea, en el centro, a 30.000 – años – luz de nuestro Sistema Solar, y puede constar de millones de agujeros negros.

En física nada se puede descartar, la inaccesibilidad de hoy a la energía de Planck se puede suplir por descubrimientos inesperados, poco a poco, nos lleve cada vez más cerca de ella, hasta que finalmente, tengamos el conocimiento y la tecnología necesarias para poder alcanzarla.

Leer más