martes, 23 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Biografía de M17

 

 Noticias de la Ciencia y la Tecnología (Amazings®  / NCYT®)
 En Sagitario se encuentra una nebulosa de emisión con tantos nombres que en ocasiones podríamos pensar que estamos hablando de objetos distintos. Muy al contrario, la nebulosa Omega, conocida como M17 en el catálogo de Messier, es una única formación de gas y polvo cuya extraña forma permite encontrar numerosas similitudes con objetos conocidos, e incluso con seres vivos.

La nebulosa Omega (también conocida como la nebulosa del Cisne, la nebulosa del Calzador, la nebulosa de la Langosta, M17 y NGC 6618) es una región HII en la Constelación Sagitario.

M17 fue descubierta por Philippe Loys de Chéseaux en el año 1745, e incorporada por Messier a su catálogo en 1764. Si hacemos recuento, no es la única nebulosa de Sagitario que el astrónomo incluyó en su lista (lo hizo con otras catorce). Lejos de extrañarnos, al mirar en esa dirección lo estamos haciendo también hacia el centro de la galaxia, donde abundan el polvo y el gas, así como las estrellas. Y M17 es precisamente una aglomeración en la que hay un poco de cada cosa.

                                      Messier object 017.jpg

                                                           M17 es una Nebulosa de Emisión

Región HII, en la que hay mucho hidrógeno disponible para la formación de estrellas, y donde podemos encontrar varias de ellas, muy jóvenes y calientes, formando un cúmulo estelar abierto que ilumina sus alrededores.

De esta iluminación se derivan las formas que adoptan los velos gaseosos, que algunas personas han bautizado como nebulosa Omega, nebulosa Interrogante, nebulosa Herradura o nebulosa Cisne, entre otros nombres que tratan de describir aquello que estamos viendo.

                 [Img #27527]
La nebulosa M17. (Foto: ESO)

Los astrónomos han estimado una distancia a la Tierra de la nebulosa que se acerca a los 5.000 años-luz. El diámetro de la zona visible (la iluminada o irradiada por las estrellas cercanas) alcanzaría los 15 años-luz, conteniendo tanta materia como 800 masas solares. El tamaño de la nebulosa real, incluyendo aquellas zonas que no pertenecerían a la nebulosa Omega y que sólo se ven prestando mucha atención, probablemente llega a los 40 años-luz, y estaría formada por más de 30.000 masas solares de gas y polvo.

                                           

Si descontamos a la de Orión, M17 es la nebulosa más brillante que los observadores del hemisferio norte pueden contemplar. Tiene una magnitud aparente de 6.0, y ello la hace visible a ojo desnudo o prismáticos, si bien sólo como una mancha de luz. Si disponemos de un cierto poder óptico, podremos verla con mucha mayor claridad, y es entonces cuando nos recordará a un cisne flotando en un estanque, con sus zonas brillantes poniendo de manifiesto el cuello y el propio cuerpo del animal.

    Observatorio de Rayos X Chandra
M17, vista por el telescopio Chandra en el rango de los rayos-X. (Foto: NASA/CXC/PSU/L.Townsley et al.)

Como zona formadora de estrellas, la nebulosa tiene ya su propia cohorte de cuerpos estelares jóvenes. Se han contado 35 con una magnitud de 9 o menos, las cuales son consideradas miembros del cúmulo estelar abierto, cuya edad es de aproximadamente 1 millón de años. Ahora bien, la región es mucho más activa de lo que podríamos imaginar viendo este relativamente pequeño grupo.

Imagen: X-ray: NASA/CXC/SAO/J. Drake et al; H-alpha: Univ. of Hertfordshire/INT/IPHAS; Infrared: NASA/JPL-Caltech/SpitzerImagen: X-ray: NASA/CXC/SAO/J. Drake et al; H-alpha: Univ. of Hertfordshire/INT/IPHAS; Infrared: NASA/JPL-Caltech/Spitzer

Imagen analizada visualmente

Imagen: X-ray: NASA/CXC/SAO/J. Drake et al; H-alpha: Univ. of Hertfordshire/INT/IPHAS; Infrared: NASA/JPL-Caltech/Spitzer. Las grandes Nebulosas siempre han sido una gran fuente de estudio.

Los grandes telescopios espaciales han hallado un millar de estrellas en proceso de formación, las cuales “emergerán” pronto del interior de la nebulosa, más otras 800 que se encuentran en varias localizaciones. Otros autores hablan de hasta 10.000 estrellas, lo que significa que la nebulosa es un auténtico nido estelar.

Las estrellas del cúmulo son las responsables, con su radiación, de excitar el gas de la nebulosa para que brille tal como lo hace. Las de tipo espectral O4V, muy calientes, son especialmente aptas para esta labor. Entre las 35 del cúmulo abierto, al menos 2 son de este tipo.

               [Img #27530]
M17, en el infrarrojo cercano. (Foto: ESO)

La nebulosa, a la que estaríamos viendo de costado, disfruta también de la presencia de estrellas gigantescas. Se han catalogado un par de ellas, HD 168607 y HD 168625, aunque quizá sólo la primera sea una variable y está asociada a la otra. Se trata de estrellas hiper-gigantes azules.

Con su escaso millón de años de vida, M17 es tan joven que aún no había producido estrellas cuando surgió el ser humano. Su juventud, pues, es ideal para el estudio de la fase temprana de este proceso. Si utilizamos la luz infrarroja, la nebulosa se convierte en solo una parte de una nube molecular gigante que domina la zona, en la que las imágenes pueden revelar la presencia de objetos estelares en plena formación, calentando sus alrededores y con una masa tres veces superior a la solar.

[Img #27531]

Los astrofísicos creen que la actual fase formadora y algunas anteriores que dieron forma a las estrellas asociadas a la nebulosa fueron desencadenadas quizá por la expansión de la burbuja de esta última. Es decir, se han producido varias oleadas que han dependido de agentes externos, las cuales podrían estar propagándose desde la nube molecular gigante.

El telescopio espacial Chandra ha detectado gas caliente fluyendo desde las estrellas jóvenes masivas en el centro de la nebulosa. Dicho gas se halla a temperaturas muy altas, de 1,5 a 7 millones de grados Celsius. Otras zonas de gas y polvo más frías, con su baja luminosidad ayudan a dibujar las formas que vemos en ella y que le dan sus múltiples nombres.

                          Una vida brillante, Estrellas. - Ciencia y educación en Taringa!Astrofísica y Física: Importante descubrimiento sobre la formación de estrellas  masivas

                     En las nebulosas las estrellas jóvenes expulsan gas hasta que se estabilizan

El gas caliente entra en el frío y crea cavidades, que a su vez pueden servir como punto de inicio para la creación de más estrellas. Las demás son demasiado jóvenes como para poder haber estallado como supernovas y haber inducido, con su onda de choque, esa formación.

DATOS BÁSICOS:

Nombres: M17, NGC 6618, Nebulosa Omega, Nebulosa Cisne, Nebulosa Herradura
Constelación: Sagitario
Distancia a la Tierra: Unos 5.000 años-luz
Magnitud: 6,0
Diámetro: 15 años-luz
Características especiales: Nebulosa de emisión HII en la que se están formando estrellas. Todas ellas son muy jóvenes, de menos de 1 millón de años. Contiene un cúmulo estelar abierto.

Publica: emilio silvera

¡Las estrellas! Que transforman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Keplers supernova.jpg

Aquí podemos contemplar una imagen compuesta de la Supernova Kepler del Telescopio Espacial Spitzer y el Hubble con la ayuda del Observatorio de rayos X Chandra. El remanente de supernova que muestra los filamentos de plasma en que se ha convertido una estrella masiva que ha dejado por el camino algún agujero negro y muchos elementos complejos creados en las inmensas temperaturas que allí estuvieron presentes.

evolución estelar: nucleosíntesisANTARES - Módulo 8 - Unidad 1-08- Programa de Nuevas tecnologías - MEC -NucleosíntesisLa creación de las estrellas y del Universo. La nucleosíntesis estelar;  Fowler. | A hombros de gigantes. Ciencia y tecnología

En las supernovas se produce la nucleosíntesis de la materia. Es decir, allí se crean nuevos elementos químicos. Ocurre principalmente debido a la nucleosíntesis explosiva durante la combustión de oxígeno explosivo y la combustión del silicio. Estas reacciones de fusión crean los elementos silicio, azufre, cloro, argón, potasio, calcio, escandio, titanio, vanadio, cromo, manganeso, hierro, cobalto y níquel. Como resultado de su expulsión desde supernovas individuales, sus abundancias crecen exponencialmente en el medio interestelar. Los elementos pesados (más pesados que el níquel) son creados principalmente por un proceso de captura de neutrones conocido como proceso-R. Sin embargo, hay otros procesos que se piensa que son responsables de algunas nucleosíntesis de elementos, principalmente un proceso de captura de protones conocido como el Proceso rp  y un proceso de foto-disgregación conocido como el Proceso P. Al final se sintetizan los isótopos más ligeros (pobres en neutrones) de los elementos pesados.

                    Diagrama del Ciclo CNO

El ciclo CNO (carbono-nitrógeno-oxígeno) es una de las 2 reacciones nucleares de fusión por las que las estrellas convierten el hidrógeno en Helio, siendo la otra la cadena protón-protón. Aunque la cadena protón-protón es más importante en las estrellas de la masa del Sol o menor, los modelos teóricos muestran que el ciclo CNO es la fuente de energía dominante en las estrellas más masivas. El proceso CNO fue propuesto en 1938 por Hans Bethe.

El carbono y sus isótopos | El carbono y sus isótopos

Cómo se determina la edad de un fósil? | Ingenia


Modelo: 126C donde 12 es peso atómico y 6 es número de protones.

Las reacciones del ciclo CNO son:

126C + ¹1H 137N + γ +1,95 MeV
137N 136C + e+ + νe +1,37 MeV
136C + ¹1H 147N + γ +7,54 MeV
147N + ¹1H 158O + γ +7,35 MeV
158O 157N + e+ + νe +1,86 MeV

Rama 1 (99,96% de todos las reacciones):

157N + 11H 126C + 42He +4,96 MeV

El resultado neto del ciclo es la fusión de cuatro protones  en una partícula alfa  y dos positrones y dos neutrinos,  liberando energía en forma de rayos gamma.  Los núcleos de carbono, oxígeno y nitrógeno sirven como catalizadores  y se regeneran en el proceso.

Fusión de elementos

Debido a las grandes cantidades de energía liberadas en una explosión de supernovas se alcanzan temperaturas mucho mayores que en las estrellas. Las temperaturas más altas para un entorno donde se forman los elementos de masa atómica mayor de 254, el californio siendo el más pesado conocido, aunque sólo se ve como elemento sintético en la Tierra.

Biografía del Universo 14: La nucleosíntesis II | El Cedazo

CHEMISTRY: SECOND ACT: STELLAR NUCLEOSYNTHESIS/ NUCLEOSÍNTESIS ESTELARFacultad de Química Departamento de Química Inorgánica y Nuclear Dr.  Sigfrido Escalante Tovar

En los procesos de fusión nuclear en la nucleosíntesis estelar,  el peso máximo para un elemento fusionado en que el níquel, alcanzando un isótopo con una masa atómica de 56. La fusión de elementos entre el silicio y el níquel ocurre sólo en las estrellas más grandes, que termina como explosiones de supernovas -proceso de combustión del silicio-. Un proceso de captura de neutrones conocido como el proceso-s que también ocurre durante la nucleosíntesis estelar puede crear elementos por encima del bismuto con una masa atómica de aproximadamente 209. Sin embargo, el proceso-s ocurre principalmente en estrellas de masa pequeña que evolucionan más lentamente.

Resultado de imagen de La Tabla Periódica

No podemos completar la Tabla periódica de elementos sin acudir a las estrellas. En las estrellas pequeñas y medianas como el Sol se transmutan una serie de elementos hasta llegar al hierro donde la fusión se frena por falta de potencia energética y, el resto de elementos más pesados y complejos, están en el ámbito de las estrellas masivas que, al final de sus vidas explotan como Supernovas y riegan el espacio interestelar de otros materiales como el oro y el platino, o, el Uranio.

http://farm3.static.flickr.com/2734/4076849383_1a19aa7aa0.jpg

Una imagen del Observatorio Chandra de Rayos-X del remanente de supernova Cassiopeia A, con una impresión artística de la estrella de neutrones en el centro del remanente. El descubrimiento de una atmósfera de carbono en esta estrella de neutrones resuelve un misterio de hace una década alrededor de este objeto. Crédito: NASA/CXC/Southampton/W.Ho;NASA/CXC/M.Weiss

Durante la nucleosíntesis de supernovas, el Proceso-R (R de Rápido) crea isótopos pesados muy ricos en neutrones, que se descomponen después del evento a la primera isobara estable, creando de este modo los isótopos estables ricos en neutrones de todos los elementos pesados. Este proceso de captura de neutrones ocurre a altas densidades de neutrones con condiciones de grandes temperaturas. En el Proceso-R, los núcleos pesados son bombardeados con un gran flujo de neutrones para formar núcleos ricos en neutrones altamente inestables que rápidamente experimentan la desintegración Beta  para formar núcleos más estables con un número atómico mayor y la misma masa atómica. El flujo de neutrones es increíblemente alto, unos 1022 neutrones por centímetro cuadrado por segundo.

Imagen relacionada

                               Pudimos desvelar el origen de los elementos y cómo se formaron

Los primeros cálculos de un Proceso-R, muestran la evolución de los resultados calculados con respecto al tiempo, también sugieren que en el Proceso-R las abundancias son una superposición de diferentes flujos de neutrones. Las pequeñas afluencias producen el primer pico de abundancias del Proceso-R cerca del peso atómico A = 130 pero no actínidos, mientras que las grandes afluencias producen los actínidos Uranio y Torio, pero no contiene el pico de abundancia de A = 130. Estos procesos ocurren en una fracción entre un segundo y unos cuantos segundos, dependiendo de detalles. Cientos de artículos relacionados publicados han utilizado esta aproximación dependiente del tiempo. De modo interesante, la única supernova moderna cercana, la Supernova 1987A, no ha revelado enriquecimientos del Proceso-R. La idea moderna es que el Proceso-R puede ser lanzado desde algunas supernovas, pero se agota en otros como parte de los neutrones residuales de la estrella o de un agujero negro.

Resultado de imagen de Los primeros cálculos de un Proceso-R, muestran la evolución de los resultados calculados con respecto al tiempo, también sugieren que en el Proceso-R las abundancias son una superposición de diferentes flujos de neutrones

No hace tanto tiempo que se observó la supernova más notable de los tiempos modernos. En febrero de 1987, la luz llegó a la Tierra procedente de una estrella que explotó en la cercana galaxia grande Nube de Magallanes. 1987a Supernova sigue siendo la supernova más cercana desde la invención del telescopio. La explosión catapultó una enorme cantidad de gas, la luz y los neutrinos en el espacio interestelar. Cuando se observó por el telescopio espacial Hubble (HST) en 1994, se descubrieron grandes anillos extraños cuyo origen sigue siendo misterioso, aunque se cree que han sido expulsados​​, incluso antes de la explosión principal. Observaciones más recientes del HST muestran en la inserción, sin embargo, han descubierto algo realmente predicho: la bola de fuego en expansión de la estrella en explosión.

Supernova captada por el Hubble

Con el paso de los siglos, las supernovas se difuminan y van cediendo material que pierden por distintos motivos de la gravedad, vientos estelares y otros sucesos que se llevan material del remanente. Arriba podemos contemplar lo que ha quedado de la Supernova SN 1572, más conocida como la Supernova de Tycho.

TRANSURÁNIDOS, TRANSACTÍNIDOS Y MÁS ALLÁ

En Química, un elemento sintético es un elemento químico que no aparece de forma natural en la Tierra, y sólo puede ser creado artificialmente. Hasta el momento, se han creado 27 elementos sintéticos (los que tienen números atómicos 95-118). Todos son inestables, descomponiéndose con vidas medias que van desde 15,6 millones de años a unos pocos cientos de microsegundos

“De los elementos con número atómico entre 1 hasta 92, todos a excepción de cuatro (43Tc61Pm85At, y 87Fr) se pueden detectar fácilmente en ciertas cantidades en la Tierra, teniendo una vida estable, o unos isótopos de vida media relativamente larga, o se generan como subproductos del uranio. Todos los elementos con gran número atómico tienen una probabilidad alta de haber sido generados de forma artificial, otros son extremadamente raros y por lo tanto han sido descubiertos mediante investigaciones científicas, y otros por el contrario no han existido anteriormente, como el plutonio y el neptunio, de los cuales ninguno tiene existencia natural sobre la tierra.”

Resultado de imagen de Elementos transuranidos
Los elementos transuránicos (conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio. El nombre de trans-uránidos significa “más allá del uranio”.

4. Megaminería de uranio | NO A LA MINA ESQUEL

De todo el Uranio que hay en la Tierra, sólo el 7 por 1000 es Uranio 235, el resto es Uranio 238. El primero es ideal como combustible nuclear de fisión y, el segundo, es como la madera mojada, no funciona como tal combustible.

Uranio | Combustible nuclear

Uranio 235

Llegados a este punto, como el Uranio válido es el 235 que precisamente está muy escaso en la Tierra, se ideó el Reactor Generador que consiste en poner una cantidad de Uranio 238 en el núcleo del generador y se bombardea con Neutrones Lentos del Uranio 235.

El proceso nos lleva a que, al final de la operación, el Uranio 238 que no vale como combustible nuclear de fisión, se ha convertido en Plutonio 239 que es un buen combustible nuclear.

¡Qué no ideará el hombre!

Uranio 238 (documental) Parte 1 - YouTube

Uranio 238

Resultado de imagen de Los elementos químicos del universo

Los elementos químicos en el Universo

En el Universo se han detectado alrededor de 90 elementos químicos distintos. La abundancia de cada uno de ellos es muy diferente,  el hidrógeno constituye casi el 75% de la materia atómica del Universo, de un elemento como el francio apenas si existen 30 g en toda la Tierra, de otros elementos no se conoce su existencia y se han sintetizado en el laboratorio, en algunos casos, apenas unos pocos átomos. Este capítulo lo vamos a dedicar a conocer como el hombre ha ampliado, sintetizándolos de manera artificial, el  de elementos químicos conocido hasta llegar en la actualidad al 118, de ellos 112 reconocidos y con nombre admitido por la IUPAC.

Lo cierto es que hemos podido llegar a saber cómo se forman los elementos en el Universo donde la Naturaleza se sirve de las estrellas para “fabricarlos” y en sus distintas categorías de más o menos masas, cada tipo de estrella desempeña una función esencial para que en el Universo puedan existir toda la gama de elementos que podemos conocer y que conforman la Tabla Periódica. Los más sencillos se transmutan en las estrellas pequeñas y los más complejos en las masivas y en las supernovas que se producen al final de sus vidas. Como se dice más arriba, los artificiales, los que están más allá del Uranio, son formados por el hombre en el laboratorio.

El Alquimista descubriendo el fósforo (1771) de Joseph Wright

“El Elixir de la vida, en árabe: Al-ḥaya, en turco otomano: Ab-ı Hayat, en turco antiguo: Bengisu, también conocido como elixir de la inmortalidad, es una legendaria poción que garantizaba la vida eterna.”

Nicolas Flamel y la piedra filosofal

Alquimista busca la Piedra Filosofal

“La piedra filosofal es una sustancia alquímica legendaria que se dice que es capaz de convertir los metales básicos, tales como el plomo, en oro (chrysopoeia) o plata. Ocasionalmente, también se creía ser un elixir de la vida, útil para el rejuvenecimiento y, posiblemente, para lograr la inmortalidad.”

Lejos quedan ya aquellos tiempos en el que los Alquimistas, perseguían transmutar el plomo en oro, encontrar la piedra filosofal y el elisír de la eterna juventud. Siempre hemos tenido una imaginación desbordante y, cuando no teníamos los conocimientos necesarios para explicar o conseguir aquello que queríamos y pensábamos que podíamos conseguir… ¡La Imaginación se desataba y volaba por los ilusorios campos de la Ignorancia!

Algunos piensan y se ha podido leer por ahí que:

Hallan la estrella de neutrones más gigantesca del universo

“Un modelo propone que el origen de los elementos más pesados que el hierro no se da en las explosiones de supernova, sino en procesos en los que están involucradas las estrellas de neutrones

Cuando se produce el “choque” de dos estrellas de neutrones, se forma el oro y el platino

Foto

Somos cenizas de estrellas. Muchos de los átomos que componen nuestros cuerpos estuvieron alguna vez en el interior de alguna estrella en donde las reacciones de fusión nucleares los sintetizaron. Una vez esos cuerpos estelares murieron los elementos que los componían fueron diseminados por el espacio. Parte de esa materia fue a parar a otros discos de acreción que formaron nuevas estrellas, planetas e incluso seres vivos.
El Big Bang sólo produjo hidrógeno, helio y pequeñas trazas de elementos ligeros, como el litio de nuestras baterías. Son los elementos primordiales. Las reacciones de fusión de las estrellas pueden sintetizar el resto de los elementos de la tabla periódica, pero no los de atómico más elevado. El elemento de corte se suele colocar en el hierro, aunque esta frontera es un tanto difusa. La razón es que las reacciones de fusión para producir esos elementos más pesados no producen energía, sino que la consumen. De hecho, la mejor manera de crear esos elementos pesados es por captura de neutrones.

Por qué la explosión violenta de supernovas puede ser la causa de que  andemos erguidos - BBC News Mundo

El caso es que, hasta , se decía que esos elementos pesados, como el oro cuyo brillo tanto nos ciega, el uranio de nuestros reactores o el platino que cataliza tanta química moderna, procedían de las propias explosiones de supernovas. Todos hemos repetido esta popular hipótesis una y otra vez, pero no hay pruebas que la avalen. De hecho, las simulaciones de modelos de explosiones de supernova no confirman dicha síntesis.

, una nueva teoría, coloca el origen de estos elementos en las estrellas de neutrones. Una estrella de neutrones es el residuo que dejan algunas estrellas de gran masa una vez explotan en forma de supernova. Unas simulaciones numéricas realizadas por científicos del Max Planck han verificado que la materia eyectada en procesos en los que están involucrados estos cuerpos producen las colisiones nucleares violentas necesarias como para producir núcleos pesados y generar los elementos más pesados que el hierro.”

http://circuitoaleph.files.wordpress.com/2013/07/estrella_neutrones.jpg

Todos sabemos por haberlo explicado aquí repetidas veces, como se forman las estrellas de neutrones que tiene una densidad de 1017 Kk/m3. ¡Una barbaridad! Pues bien, cuando dos de estas estrellas colisionan, se produce una inmensa explosión en la que se pueden crear materiales como el oro y el platino entre otros. Así ha resumido, un grupo de astrofísicos una investigación realizado para comprobar qué pasaba en este tipo de sucesos. De ello podemos deducir que se pueden formar nuevos materiales por procesos distintos al de la fusión nuclear en las estrellas. Sin embargo, la mayoría de los elementos están “fabricados en los hornos nucleares” y, gracias a ello, podemos nosotros estar aquí para contarlo.

emilio silvera

Sencillamente sería el fín de los Seres vivos de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Y si el Sol desapareciera de repente?

Esta es la cascada de consecuencias para nuestro planeta y cómo se sucederían en el tiempo

 

¿Y si el Sol desapareciera de repente?

 

 

Reportaje de prensa

 

 

No hace falta ser un astrónomo experimentado para saber que dependemos completamente del Sol. Nuestra estrella particular, en efecto, ocupa el centro de nuestro sistema planetario, mantiene los mundos en su sitio e irradia la energía necesaria para que aquí, en la Tierra, sea posible la vida. Gracias al Sol tenemos luz, calor, atmósfera, fotosíntesis, océanos… Sabemos también, sin embargo, que nada, ni siquiera el Sol, dura eternamente. Durará mucho tiempo, sí, aunque no para siempre. ¿Pero qué sucedería si un buen día el Sol desapareciera de repente? ¿Cuáles serían las consecuencias para nosotros y cómo se sucederían en el tiempo?

Un gráfico recién publicado por la web SolarCentre ha recopilado mucha de la información disponible para resolver la cuestión. Y el panorama, como era de suponer, no resulta nada esperanzador…

Se acabó la gravedad

 

 

El mundo sería muy distinto si de pronto desapareciera la fuerza de Gravedad que genera el Sol

 

En una secuencia cronológica, lo primero que desaparecería con el Sol es su atracción gravitatoria. Todos los planetas están “ligados” gravitatoriamente al Sol, y su súbita desaparición los dejaría sin un centro alrededor del que orbitar. De modo que empezarían a viajar, más o menos, en línea recta, hasta que se toparan con otro cuerpo lo suficientemente grande como para atraerlos. La estrella más cercana, Alpha Centauri, está a 4,2 años luz de distancia, así que esta situación de “vagabundeo espacial”, suponiendo que algún mundo se dirigiera hacia allí, duraría muchos miles de años.

Por supuesto, al perder su orden establecido es muy probable que algunos planetas chocaran entre sí, o que muchas lunas acabaran precipitándose sobre los mundos a los que orbitan. Júpiter y Saturno, los dos gigantes del Sistema Solar, lograrían quizá atraer a algunos de los planetas que nos rodean, para devorarlos sin contemplaciones.

Oscuridad eterna

 

Si el Sol desaparece… la Vida se iría con él : Blog de Emilio Silvera V.

 

Aquí, en la Tierra, tardaríamos 8 minutos en darnos cuenta de que el Sol ya no está en su sitio. Ese es, en efecto, el tiempo que un rayo de sol tarda en recorrer, a la velocidad de la luz, los 150 millones de km. que nos separan del astro rey. Pasado ese tiempo, nos veríamos sumidos de repente en una total oscuridad. Y sería para siempre. Ni siquiera seríamos capaces de volver a contemplar la Luna, ya que su brillo no es más que un reflejo de la luz que recibe del Sol. Sí que veríamos las estrellas, que disponen de sus propias fuentes de luz, pero nuestras vidas se convertirían en una larga e interminable noche. Sin luz, además, las plantas ya no podrían seguir haciendo la fotosíntesis, con lo que la aportación de oxígeno a la atmósfera se interrumpiría casi por completo. Las reservas planetarias del gas que nos permite respirar apenas si durarían un par de semanas.

Se acabó el calor

 

Resultado de imagen de Desaparece el Sol y la Tierra se congela

 

Pero la oscuridad no sería lo más grave. De hecho, la temperatura media de la Tierra, que actualmente es de 29,6 grados, descendería rápidamente hasta los -123 grados en apenas dos meses. Cuatro meses después de la desaparición del Sol, la temperatura media de nuestro planeta sería de -198 grados, casi doscientas veces más fría que el interior de una nevera doméstica. En estas condiciones, la inmensa mayoría de la vida desaparecería de nuestro mundo. Solo quedarían algunos microorgansmos extremófilos que viven en medio de las rocas de la corteza terrestre, a varios km. de profundidad, y que no dependen de la luz solar. Los animales subterráneos y los carroñeros lograrían sobrevivir, quizá, durante un breve tiempo adicional, alimentándose de los cadáveres del resto. Pero terminarían desapareciendo en pocas semanas, junto a los demás. Sorprendentemente, los árboles más grandes lograrían, quizá, sobrevivir más tiempo, incluso durante algunas décadas, a pesar del frío y sin fotosíntesis.

Para los humanos, la única opción sería embarcar en submarinos y sumergirse con ellos hasta lo más profundo de los océanos, para aprovechar el calor interno del planeta a medida que surge a través de las fuentes hidrotermales. Con los océanos congelados, ese sería, probablemente, uno de los últimos reductos para la vida terrestre. Otra solución temporal sería la de construir módulos habitables totalmente aislados de las condiciones externas, aunque habría muy poco tiempo para hacerlo (menos de un mes desde el “apagón”) y, de conseguirlo, solo se salvarían unos pocos y durante un tiempo limitado.

15 Fotos asombrosas de lagos y estanques helados | Bored Panda15 Fotos asombrosas de lagos y estanques helados | Bored Panda15 Fotos asombrosas de lagos y estanques helados | Bored PandaPaisajes De Ian Skelton Imágenes De Stock & Paisajes De Ian Skelton Fotos  De Stock - Alamy

Al final, unos pocos cientos de años tras la desaparición del Sol, incluso las profundidades oceánicas se congelarían. La atmósfera se colapsará y la gélida superficie de lo que fue un mundo lleno de vida quedaría indefensa del bombardeo radiactivo de los rayos cósmicos.

Un panorama, pues totalmente desolador. Por fortuna, el Sol es una estrella de mediana edad, que lleva brillando unos 5.000 millones de años y todo parece indicar que lo seguirá haciendo durante otros 5.000 millones de años más. Aunque ningún ser humano llegará a verlo. Dentro de “solo” unos 1.000 millones de años, en efecto, el Sol se habrá vuelto tan caliente que hará hervir los océanos, que se evaporarán y harán de la Tierra un mundo inhabitable. Ojalá que para entonces ya estemos instalados en otros lugares, muy lejos de aquí…

Lo grande y lo pequeño, el saber y la ignorancia, El Universo y nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La gran Nebulosa de Orión
Cuando pienso en aquel pensamiento de Leibniz y miro la Nebulosa de Orión, puedo comprender ese Principio que en la Física llamamos causalidad:
“Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro”.
Así, un día muy lejano ya en el pasado, una Supernova sembró el espacio interestelar con una Nebulosa que conocemos como Orión, en ella se han ido produciendo transiciones de fase como consecuencia del nacimiento de estrellas y mundos, y, la materia que en el pasado era simple, en el presente es más compleja y se está preparando para que en el futuro pueda llegar hasta ¡la vida! Ahí, en esa Nebulosa que arriba podemos contemplar, están todos los ingredientes de las estrellas, los mundos, la Vida y… ¡los pensamientos!
Los finales del siglo XX quizá sean recordados en la de la Ciencia como la época en la que la Física de partículas, el estudio de las estructuras más pequeñas de la Naturaleza (al menos hasta donde sabemos), unió sus fuerzas a la cosmología, el estudio del Universo como un todo. Juntas estas dos disciplinas esbozarían el esquema de la historia cósmica, investigando el pasado de las estructuras naturales en un çambito de escala enorme, desde los núcleos de los átomos hasta los cúmulos de galaxias.
La evolución de Darwin comienza en el inmenso Cosmos, donde las estrellas fabrican los materiales de la Vida.
El Hubble nos llevó hasta los confines del Universo profundo para ver viejas  galaxias de 13.000 millones de años de edad, y, cercanas al del Universo primitivo, cuando aún no existían estrellas y, la materia, se estaba formando.
Como decimos, la física y la cosmología hicieron un matrimonio de conveniencia y apresurado, se juntaron dos disciplinas muy diferentes. Los cosmólogos son solitarios y mantienen sus miradas fijas en ese horizonte lenano y profundo de los cúmulos de galaxias situados en el espacio-tiempo profundo y, acumulan, amorosamente sus de hilillos de antigua luz estelar que le traen mensajes y les cuentan la historia del universo.
Los físicos de partículas, en contraste con ellos, son relativamente gregarios -tienen que serlo, pues ni siquiera un Einstein sabe suficientemente de física como para hacerlo todo el sólo- y físicos: son por tradición transmitida estudiosos del aquí y ahora, inclinados a curvar cosas, volar cosas y desmontar cosas. Los físicos trabajan dura y rápidamente, obsesionados por la leyenda de que es improbable que tengan muchas ideas nuevas útiles después de cumplir los cuarenta, mientras que los cosmólogos son más a menudo jugadores de finales, adeptos a las visiones de vasto alcance, de quienes cabe esperar que realicen investigaciones productivas cuando sus cabellos blanquean por la edad. Los físicos son los zorros  que saben muchas cosas, los cosmólogos son más afines a los erizos, que saben una sola .
Claro que, como nos decía Marco Aurelio:
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin: pues todas las cosas son de la misma clase y la misma forma.”

Leyendo ese pensamiento, me digo yo: sólo el paso del tiempo las transforma para finalmente, hacerlas desaparecer para que, de inmediato, puedan surgir otras nuevas que, en realidad, serán las mismas cosas que ya fueron.

 

 

 

                          Lo que arriba vemos, un día fue como nuestro Sol

 

A finales de los años setenta, los físicos de partículas se aventuraron a acudir a seminarios de cosmología a estudiar las galaxias y los quásars, mientras que los cosmólogos alquilaron del CERN y el Fermilab para trabajar en física de altas energías en instalaciones subterráneas desde donde se veína las estrellas. Algún famoso físico de aquellos tiempos dijo: “La física de partículas elementales y el estudio del universo primitivo, las dos ramas fundamentales de la ciencia de la naturaleza, se han fundido esencialmente”.
Son muchas las disciplinas científicas que hoy día, se están uniendo en la de objetivos comunes. Se investiga de manera conjunta y cada uno de esos apartados científicos, finalmente aunan los resultados para llegar a un todo que, nos mostrará la verdadera naturaleza del Universo, la materia que contiene y…¿por qué no? también de la vida misma.
El de encuentro entre físicos y cosmólogos fue el Big Bang. los físicos identificaron simetrías en la naturaleza que hoy están rotas pero que estuvieron intactas en un entorno de altas energías. Los cosmólogos informaron que el universo estuvo antaño en tal estado de alta energía, durante las etapas iniciales del big bang. Unidas ambas cosas, aparece el de un universo perfectamente simétrico cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y asignándoles las pruebas de su genealogía

Claro que, si no existieran simetrías, en la Tierra habría días de 24 horas y otros de cinco minutos; viviríamos en un planeta deforme en la gravedad proyectaría objetos en todas direcciones; habría explosiones inexplicables. Sería un mundo peligrosamente caprichoso.

 Por fortuna, hay simetrías, hay reglas que nos dicen que los planetas son esféricos, que los rostros son simétricos, que todos los días duran lo mismo, que hay frío y calor, día y noche, que hay positivo y negativo, que todo en el universo se rige por el equilibrio que se consigue en la igualdad de fuerzas contrapuestas, y, de esa manera, se llega a la simetría que nos rodea y podemos contemplar por todas partes. Sin embargo, nuestro Universo es el de simetrías rotas.

Tres Físicos recibieron el Nobel por las “simetrías rotas de la Naturaleza” Dos japoneses y un Yanqui (bueno, Estadounidense) ganaron el Premio Nobel de Física del 2008 por cosas que ayudan a explicar el comportamiento de las partículas más pequeñas de materia.

Makoto Kobayashi, Toshihide Masukaway el japonés nacido estadounidense, Yoichiro Nambu

En física, la idea de simetría refiere a un tipo de igualdad o equivalencia en una situación. En el nivel subatómico, por ejemplo, no deberías poder decir si estás viendo desplegados directamente en un espejo, o si una película de esos eventos está corriendo adelante o atrás. Y las partículas deberían comportarse justo como sus alter egos, llamadas antipartículas.

Si cualquiera de estas reglas es violada, la simetría se rompe.

Una gran simetría rota surgió inmediatamente después del Big Bang,  cuando sólo una infinitesimal fracción más de materia que antimateria fué creada. Debido a que estos dos tipos de partículas se aniquilan entre sí al encontrarse, ese exceso de materia fue de sembrar el Universo. En el suceso, sucedió la rotura de la simetría de la “fuerza única” que contenía todos los mecanismos y leyes de aquel primer universo.

El universo primitivo, en una espectacular imagen en 3D

                        Nadie pudo estar allí para tomar una instantánea de aquel Universo primitivo

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para y formar protones y neutrones los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

El Universo está lleno de información que debemos buscar para tratar de entender qué mensajes nos envía, lo que nos quiere decir. Sabemos que el Universo es todo lo que existe desde la materia, las fuerzas que con ella interaccionan y el Espacio y el Tiempo pero, seguimos preguntándonos ¿qué hacemos nosotros aquí?

Spitzer revela la existencia de los fulerenos en el espacio por primera vez

La materia evolucionada llegó hasta nosotros valiéndose del Carbomo, ese elemento esencial para la vida que conocemos

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E = mc2. Esta es la fuente de energía que subyace en la bomba atómica.

    ¿Qué sabemos de la Energía ?  ¿La sabemos utilizar?

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie , se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la de la vida de las estrellas, generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

http://1.bp.blogspot.com/_hSuCohawC_Q/S_bNuIosk2I/AAAAAAAAAAk/SuxTbAI96VY/s1600/ciclo+de+vida+de+las+estrellas.jpg

         En cualquier Nebulosa podemos cúmulos de estrellas

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos en realidad con relación al universo. Como una colonia de bacterias que habitan en una , allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno. Y, sin embargo, por otra parte, al pensar en la Mente de la que somos poseedores, me paso a otro pensamiento que es, totalmente opuesto y me dice que, algo más que simples seres vivientes sí que somos. El simple hecho de ser conscientes del Universo que nos da cobijo, es ya un síntoma de una más elevada categoría.

Igualmente, nosotros nos creemos importantes de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante. Uno de los principales problemas con los que tenemos que luchar, es el hambre en el mundo, la igualdad de los pueblos, y, seguidamente, tendremos que pensar en nuevas fuentes de energías que cubran las exigencias de una población creciente y exigente.

En todo este galimatías de conocimientos restringidos por una enorme ignorancia, sería poder saber lo que realmente son los fotones y los electrones, esas dos minúsculas partículas elementales de las que sospecho, que pueden encerrar las verdades del mundo, es decir, los secretos más profundos de la naturaleza. (137 que enlace con e, h, y c, donde pueden estar escondidas las a lo que no sabemos: ahí está la esencia de la relatividad, también nos habla de cuanto de acción de Planck y, por si fuera poco, el electromagnetismo está representado pro el electrón.

¿Sabremos alguna vez? Hilbert, en su tumba, tiene grabado que sí, en su epitafio nos dice: Tenemos que , ¡sabremos!

Me gustaría que tal predicción fuera cierta.

emilio silvera

Formación de los elementos en las Estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellas

Es importante saber la abundancia cósmica de elementos que se producen en las estrellas y los mecanismos mediante los cuales se obtienen en estrellas como el Sol que consiguen llegar hasta el Hierro y en estrellas masivas y explosiones supernovas que llegan hasta el Uranio.

Resultado de imagen de Efecto triple alfa

Aquí se escenifica el proceso Triple Alfa

Ya he escrito en otras ocasiones sobre el gran astrofísico Fred Hoyle , que tenía un dominio de la física nuclear no superado entre los astrónomos, hombre de espíritu independiente, que por pura energía intelectual se había abierto camino desde los grises valles textiles del norte de Inglaterra hasta llegar a ser un distinguido profesor de Cambridgue. Hoyle era individualista hasta el punto de la iconoclasia, y tam combativo como si hubiese ganado luchando su título de sir. Sus clases eran carismáticas, con acento de clase obrera que parecía ahondar sus credenciales eruditas acumuladas, y era igualmente eficaz con la palabra escrita; publicaba penetrante artículos especializados, fascinantes obras de divulgación ciantífica y animadas narraciones de ciencia-ficción en la que encontraba una puerta de escape para exponer ideas avanzadas que, científicamente, no estaban contrastadas.

Fred Hoyle

                           FRED HOYLE

Su burla era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiermpo”. En aquel momento, no estaba falto de razón.

Pero no es ese el motivo de este trabajo, ya os decía antes que Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “árbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

          En las distintas secuencias presentes en las estrrellas… dintintos elementos

Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que existen son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia éscribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

                               En el Big Bang: Hidrógeno, Helio, Litio.

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habéis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

La abundancia, distribución y comportamiento de los elementos químicos en el cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

Imagen relacionadaImagen relacionadaImagen relacionadaImagen relacionada

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

Resultado de imagen de Gran Nebulosa de OriónResultado de imagen de Gran Nebulosa de Orión

           Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta historias que…

 

  FUENTES DE DATOS DE ABUNDANCIAS CÓSMICAS DE LOS ELEMENTOS

Resultado de imagen de ABUNDANCIAS CÓSMICAS DE LOS ELEMENTOS

Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende:

Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nebulosas gaseosas o nubes de gas interestelar y polvo. Las nebulosas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nebulosas de “Orión” y “Trifidas”. Las ventajas de estas nebulosas difusas para el estudio de las abundancias son:

Resultado de imagen de Nebulosa TrífidaResultado de imagen de Nebulosa Trífida

‑ Su uniformidad de composición.

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nebulosas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

 

Resultado de imagen de Las Nebulosas como criadero de estrellas

                         Las estrellas se forman a partir del gas y el polvo de las Nebulosas

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

El Sol como gigante roja

          El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después

Hoyle en sus investigaciones de los elementos en las estrellas se encontró con el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamericano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

                                         Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Imagen relacionadaImagen relacionadaResultado de imagen de Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.Resultado de imagen de estrellas tipo m

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubridor qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en la relativo al big bang.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, seguramente los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

                                                 Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Resultado de imagen de El peso de los diversos átomos

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolución estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

Resultado de imagen de gráfico de la abundancia de elementos en el blog de emilio silvera vázquez

En estrellas como el Sol, el proceso se frena en el Huerro

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Vía Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plomo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

File:Triple-Alpha Process.png

         En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:

Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

emilio silvera