miércoles, 24 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué será la materia?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                    a) Definiciones de los estados de la materia - LOS ESTADOS DE LA MATERIA EN  LA FISICA KAVM

Estábamos muy atrasados en el conocimiento de la materia y, en los colegios, nos decían que estaba en tres estados. Tenemos los cuatro representados en la imagen, y, se han logrado estados artificiales como el del Condensado de Bose-Einstein

                                                condensado de bose-einstein - INFIMIKIMIA

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

                                                   Qué es la fisión espontánea? Definición

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

                             

                                                               El electrón es onda y partícula

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

MOMENTOS ESTELARES DE LA CIENCIA: JOSEPH JOHN THOMSON

                         Josepth John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

(“Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Carta de un átomo de hidrógeno a la humanidad - Principia

                  El “universo” cuántico es una maravilla de la Naturaleza. Para nosotros, inimaginable.

                      Bueno, no para todos: Planck, Einstein, Dirac, Feynman… Y una larga lista.

                                                              Liquid helium, superfluidity

“Cuando se enfría el helio a una temperatura crítica de 2,17 K (llamado su punto lambda), ocurre una discontinuidad notable en la capacidad calorífica, la densidad del líquido cae, y una fracción del mismo se convierte en un “superfluido” de viscosidad cero. La super-fluidez surge de la fracción de átomos de helio que se ha condensado a la energía más baja posible.

Una aplicación importante del helio líquido ha sido el estudio de la superconductividad y sus aplicaciones en los imanes superconductores.”

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attosegundo equivalente a la trillonésima parte de un segundo”.)

                                                            Átomos: los bloques fundamentales de todo lo que existe en el universo |  Enterarse

                                                                                  ¡No por pequeño, se es insignificante!

                                                                                   Biografía de Louis de Broglie | Aquifrases

                                                                                                            De Broglie

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

                                   

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas.

Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm., de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

                                        INTERFERÓMETRO, CREADO PARA MEDIR LONGITUDES DE ONDA

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es 0, su carga es 0, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Las galaxias y los agujeros negros podrían crecer juntos - La Provincia

          Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

                             

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

           

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque lo hemos captado, no lo sabemos descifrar.

No puedo dejar de referirme al vacío theta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido.

Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

emilio silvera


* Dualidad onda partícula en el comportamiento del electrón, por ejemplo.

* Teorema de Bloch: relativo a la M.C. de los Cristales, que estable que la función de ondas Ψ (π)=exp (ik’π) U (π).

Intrincada búsqueda: ¡La Gravedad cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La gravedad cuánticaGravedad cuántica, pesando lo muy pequeño (Segunda parte) - Naukas
Cuando hablamos de Gravedad cuántica, estamos tratando de abarcar mucho más, de lo que en realidad podemos. Esas sencillas palabras ¡Gravedad cuántica!, están apuntando hacia un horizonte hasta el momento presente inalcanzable y que, integra muchas ideas e intuiciones que los físicos teóricos han expuesto con generosidad.

 

Nunca han importado muchos los peligros que tengamos que correr para buscar las respuestas de lo profundamente escondido en la Naturaleza, ni tampoco ha importado hasta donde ha tenido que viajar la imaginación para configurar modelos y teorías que, más tarde, queremos verificar.

Puede explicarse la conciencia con física cuántica? - BBC News MundoSobre la teoría cuántica de la consciencia (de Hameroff y Penrose) - La  Ciencia de la Mula Francis
                                 Incluso se ha hablado de la Teoría cuántica de la conciencia
“La naturaleza de la conciencia humana”, que Penrose opina no es de naturaleza puramente algorítmica sino que incluiría elementos no computables. Penrose apunta que una teoría cuántica de la gravitación debería ser no lineal, y si bien podría ser realmente determinista sería claramente no computable lo que explicaría que los fenómenos cuánticos de medición nos parecieran impredecibles tal como realmente observamos.

También una teoría cuántica de la gravedad debería ampliar nuestro conocimiento de efectos cuánticos predichos por enfoques tentativos de otras teorías cuánticas, como la existencia de radiación de Hawking.”

¡Y mucho más sobre este mismo tema!

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

                                        Resultado de imagen de Es gran teoría del todo en la Física

“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace.  Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales: las fuerzas gravitatoriaelectromagnéticanuclear fuerte y nuclear débil.”

 

            

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para poder contemplar esas cuerdas vibrantes si es que están allí?

                           

Ni vemos la longitud de Planck ni las dimensiones extra y, nos dicen que para poder profundizar hasta esa distancia, necesitamos disponer de la Energía de Planck, es decir 1019 GeV, una energía que ni en las próximas generaciones estará a nuestro alcance. Pero mientras tanto, se habló, allá por el 2.015 de que, en el LHC buscará las partículas de la “materia oscura”. ¡Qué gente!

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

        

Nuestro universo ¿es tridimensional y no podemos esas dimensiones extra de las que tanto hablan en las teorías más avanzadas pero, no verificadas?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que antes os hablaba.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Ya sabéis lo que pasa cuando queremos juntar la relatividad con la cuántica: ¡Aparecen los infinitos que no son re-normalizables!

                                          Un experimento desafía el Modelo estándar de la física de partículas

                                           El experimento que desafía al Modelo Estándar

Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacciones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.

¡Necesitamos algo más avanzado!

                                           

Se ha dicho que la función de la partícula de Higgs  es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada y el hallazgo ha merecido el Nobel de Física. Sin embargo… nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.

El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

¿Es el efecto frenado que sufren las partículas que corren por el océano de Higgs, el que les da la masa?

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Hallan cinco nuevos núcleos atómicosCómo está constituido el núcleo de los átomos? - Foro Nuclear

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

El experimento de Rutherford - portfolio NaomiEL MAYOR EXPERIMENTO DEL MUNDO SE REALIZA EN EL LHC

No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge en los dos extremos: El infinitesimal de los átomos y las partículas que los conforman, y, las galaxias más lejanas.

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W, Zº fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Hay otra descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Relatividad General y Física Cuántica - una unión imposibleGravedad cuántica - Wikipedia, la enciclopedia libre
            Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Roger Penrose es uno de los nuevos humanistas del siglo que se ha interesado por los problemas de las matemáticas, de la física, de la biología, de la psicología y de la filosofía. Siguiendo el modelo de Popper de los tres mundos, ha trabajado sobre la flecha del mundo 1 de la física, al mundo 2 de la conciencia, y del mundo 3 de las matemáticas. Complejos mundos que finalmente están conectados por esos hilos invisibles que mantiene al universo unido en todas sus partes, ¡las que piensan también!

                                    Resultado de imagen de supercuerdas

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

                                                   Qué es la teoría de cuerdas? – Ciencia de Sofá

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

Nuevo método para descubrir materiales con propiedades topológicasNuevas fases de la materia gracias a la topología - La Ciencia de la Mula  Francis

La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.

De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.

Formación de estrellas tan solo 250 millones de años después del Big Bang

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el anómalo movimiento de las galaxias o la expansión del espacio que corre sin freno hacia… ¿Otro universo que tira del nuestro, como ocurren con las galaxias que terminan por fusionarse?

emilio silvera

Mundo de Agua

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

La Tierra primitiva tuvo continentes y condiciones para la vida muy pronto  - AxxónReal Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva  y el origen de la vida'

 

La Tierra es el mayor de los planetas interiores y se creó como todos los planetas restantes del Sistema Solar, hace aproximadamente 4.6 miles de millones de años. La Tierra primigenia se formó por la colisión y fusión de fragmentos de rocas más pequeños, de los denominados planetesimales.”

 

Hallan los fósiles más antiguos de la Tierra

         Tubos de hematites hallados en los depósitos de las fuentes hidrotermales que representan los                      microfósiles más antiguos de la Tierra. Crédito: Matthew Dodd U.
Desde hace tiempo se considera a las fuentes hidrotermales bajo los océanos uno de los primeros entornos que albergaron vida en la Tierra por su contenido rico en hierro. Es en esos lugares donde los científicos se han centrado para encontrar las primeras formas de vida bacteriana en la Tierra.
              Descubren los fósiles más antiguos que se conocen | RTVE.esZircones datan la tectónica de placas en 3.600 millones de años
                                         La extraordinaria belleza de Pilbara, el sitio de Australia con algunas de  las formaciones más antiguas de la Tierra - BBC News Mundo
 La región de Pilbara en Australia Occidental se encuentra entre los lugares más antiguos de la Tierra.
 

 

       “Restos de microorganismos de 3.770 millones de años, que fueron descubiertos                     en rocas sedimentarias de antiguas, se convirtieron en la primera evidencia de vida en la Tierra.”

La vida echó raíces hace más de cuatro mil millones años en nuestra naciente Tierra, un lugar más húmedo y más duro que ahora, bañado por chisporroteantes rayos ultravioleta. Lo que comenzó como simples células finalmente se transformó en mohos del fango, ranas, elefantes, seres humanos y el resto de los reinos vivos de nuestro planeta. ¿Cómo empezó todo?

                         

 

                  Alrededor de estos lugares viven criaturas que soportan temperaturas imposibles

Un nuevo estudio de investigadores del Laboratorio de Propulsión a Chorro y el Instituto de Astrobiología de la NASA describe cómo la energía eléctrica producida de forma natural en el fondo del mar pudo haber dado origen a la vida en la Tierra hace 4.000 millones de años. Aunque los científicos ya habían propuesto esta hipótesis -llamada “aparición de vida hidrotermal alcalina submarina”- el nuevo estudio reúne décadas de trabajo de campo, de laboratorio e investigación teórica en un gran imagen unificada.

http://imagenagropecuaria.com/revista/wp-content/uploads/2013/03/Agua-mundo.jpg

Según los resultados, sustentados en la teoría del “mundo de agua”, la vida pudo haber comenzado en el interior de fondos marinos cálidos, en un tiempo remoto cuando los océanos se extendían por todo el planeta. Esta idea de las fuentes hidrotermales como posibles lugares para el origen de la vida fue propuesta por primera vez en 1980 tras estudiarse en el fondo del mar cerca de Cabo San Lucas, México. Llamadas “fumarolas negras” son respiraderos de burbujas con agua hirviendo y fluidos ácidos calientes. Por el contrario, los respiraderos de ventilación en el nuevo estudio -la hipótesis del científico Michael Russell del JPL en 1989- son más suaves y se filtran con líquidos alcalinos. Uno de estos complejos de estos respiraderos alcalinos se encontró casualmente en el Océano Atlántico Norte en 2000, y fue apodado la Ciudad Perdida.

CCI-ArticulosA VUELO DE UN QUINDE® - EL BLOG !!!!! .::::.: NASA : Nuevo Estudio Apoya la  Teoría del "Mundo de Agua" Para el Origen de la Vida

Imagen del fondo del océano Atlántico que muestra una colección de torres calcáreas conocidas como la «Ciudad Perdida». Se ha sugerido que las chimeneas alcalinas hidrotermales de este tipo son el lugar de nacimiento de los primeros organismos vivos de la Tierra antigua.

Image Credit: NASA/JPL-Caltech

“La vida se aprovecha de los estados de desequilibrio en el planeta, como puede haber sido el caso hace miles de millones de años en los respiraderos hidrotermales alcalinos”, la vida es el proceso que resuelve estos desequilibrios”.

                                     Blog de Emilio Silvera V. » Biologia

                                                      Blog de Emilio Silvera V. » Biología

La teoría del mundo de agua de Russell y su equipo dice que las cálidas fuentes hidrotermales alcalinas mantienen un estado de desequilibrio con respecto al antiguo entorno ácido de los alrededores en el océano, que podría haber proporcionado la llamada energía libre para impulsar el surgimiento de la vida. De hecho, los respiraderos de ventilación podrían haber creado dos desequilibrios químicos. El primero fue un gradiente de protones, donde los protones -los iones de hidrógeno- se concentraron más en el exterior de las chimeneas de ventilación. El gradiente de protones podría haber sido aprovechado para la energía -algo que nuestros propios cuerpos hacen todo el tiempo en las estructuras celulares llamadas mitocondrias.

El segundo desequilibrio podría haber implicado un gradiente eléctrico entre los fluidos hidrotermales y el océano. Hace miles de millones de años, cuando la Tierra era joven, sus océanos eran ricos en dióxido de carbono. Cuando el dióxido de carbono del océano y de los combustibles de la ventilación -hidrógeno y metano- surgió a través de la pared de los respiraderos, los electrones pudieron haber sido transferidos. Estas reacciones podrían haber producido los compuestos de carbono -u otros orgánicos más complejos- que contienen ingredientes esenciales de la vida tal como la conocemos. Al igual que los gradientes de protones, los procesos de transferencia de electrones se producen regularmente en las mitocondrias.

Mitocondria | NHGRIQué son las mitocondrias y cuál es su función? - Ondas y Partículas

Como pasa con todas las formas de vida avanzadas, las enzimas son la clave para que las reacciones químicas ocurran. En nuestros antiguos océanos, los minerales pueden haber actuado como enzimas, interactuando con los productos químicos alrededor y conducir reacciones. En la teoría del mundo de agua, dos tipos diferentes de “motores” de minerales podrían haber delineado las paredes de las estructuras del respiradero.

Uno de los pequeños motores se cree que ha utilizado un mineral conocido como óxido verde, lo que le permite aprovechar las ventajas del gradiente de protones para producir una molécula que contiene fosfato que almacena energía. El otro motor se cree que ha dependido de un metal raro llamado molibdeno.

“La teoría de Michael Russell se originó hace 25 años y, desde ese momento, las misiones espaciales de JPL han encontrado una fuerte evidencia de océanos de agua líquida y fondos rocosos en Europa y Encelado”, dijo Laurie Barge, investigadora del JPL. “Hemos aprendido mucho sobre la historia del agua en Marte, y pronto podemos encontrar planetas similares a la Tierra alrededor de estrellas lejanas. Al probar esta hipótesis del origen de la vida en el laboratorio de JPL, podemos explicar cómo la vida podría haber surgido en otros lugares de nuestro Sistema Solar o más allá, y también tener una idea de cómo buscarla”.

LA NASA