jueves, 18 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Seguimos avanzando… ¡A tientas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia – Reportaje de Prensa

¿Todas las galaxias en el centro de una esfera de agujeros negros?

 Resultado de imagen de ¿Todas las galaxias en el centro de una esfera de agujeros negros?

Una nueva investigación sugiere que lo que llamamos materia oscura podrían ser, en realidad, agujeros negros primordiales

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente – NASA/JPL-Caltech/A. Kashlinsky (Goddard)

Resultado de imagen de Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo

Todas las galaxias, incluida la nuestra, podrían estar completamente rodeadas por una enorme esfera de agujeros negros. Esa es la extraordinaria conclusión de un equipo de investigadores del Centro Espacial Goddard, de la NASA, que ha sugerido la posibilidad de que la misteriosa y hasta ahora esquiva materia oscura esté hecha, en realidad, de “agujeros negros primordiales“, esto es, formados durante el primer segundo tras el Big Bang.

Para Alexander Kashlinsky, director de la investigación, la idea es consistente con lo que observamos en el fondo cósmico, tanto en la longitud de onda del infrarrojo como en la de los rayos X, y puede explicar también las masas inesperadamente elevadas de los dos agujeros negros en proceso de fusión observadas el año pasado, durante la primera detección de ondas gravitacionales. El estudio se acaba de publicar en The Astrophysical Journal Letters.

“Este estudio -explica el investigador- constituye un gran esfuerzo para unir toda una serie de ideas y observaciones y ver lo bien que encajan. Y resulta que encajan sorprendentemente bien. Si esto es correcto, entonces todas las galaxias, incluyendo la nuestra, serían parte de una gran esfera de agujeros negros, cada uno de ellos de aproximadamente 30 masas solares”.

Resultado de imagen de telescopio espacial Spitzer

Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo. Los científicos reportaron una irregularidad excesiva en ese brillo, y concluyeron que probablementese se debía a la suma de los brillos de las primeras fuentes de luz que iluminaron el Universo primitivo, hace más de 13.000 millones de años. Estudios posteriores confirmaron que este brillo del fondo cósmico de infrarrojos (CIB, por sus siglas en inglés) tiene la misma e inesperada estructura irregular también en otras partes del cielo.

Chandra X-ray Observatory.jpg

En 2013, otra investigación hizo lo mismo, pero esta vez observando el brillo del fóndo cósmico en el rango de los rayos X (CXB), utilizando el telescopio espacial Chandray en la misma porción de cielo en la que se había medido el brillo en el infrarrojo. Las primeras estrellas, que emiten la mayor parte de su radiación en el espectro visible y en el ultravioleta, no contribuyen en exceso al CXB.

El resultado fue que los brillos irregulares en el fondo cósmico coincidían muy bien tanto en los rayos X como en el infrarrojo. Y el único objeto conocido capaz de ser lo suficientemente luminoso en cualquier rango de energía es un agujero negro. Los investigadores, pues, concluyeron que los agujeros negros primordiales, los que se formaron durante el Big Bang, debieron de ser muy abundantes entre las primeras estrellas, tanto como para constituir al menos una de cada cinco de las fuentes que contribuyen al CIB.

No es materia oscura, sino agujeros negros

Resultado de imagen de Resultado de imagen de No es la materia oscura, son los agujeros negros

Y aquí es donde entra en juego la materia oscura, cuya auténtica naturaleza sigue siendo uno de los problemas no resueltos más importantes de la astrofísica. Cinco veces más abundante que la materia ordinaria, de la que están hechas todas las galaxias, estrellas y planetas que podemos ver, la materia oscura no “brilla”, es decir, no emite radiación, en ninguna longitud de onda, por lo que resulta indetectable para cualquiera de nuestros instrumentos. Sabemos que está ahí, sin embargo, porque su fuerza gravitatoria obliga a la materia ordinaria (la que sí podemos ver) a moverse de formas que, sin la existencia de esa masa invisible, serían imposibles.

Hasta ahora los físicos han tratado de construir modelos teóricos que puedan explicar la materia oscura con una partícula exótica muy masiva, pero todas las pruebas llevadas a cabo para encontrar esa hipotética partícula han fracasado sin excepción.

Resultado de imagen de Resultado de imagen de Buscan partículas de materia oscura

Resultado de imagen de Resultado de imagen de Buscan partículas de materia oscura

Según Kashlinsky, “estos estudios están proporcionando resultados cada vez más sensibles, reduciendo lentamente el abanico de parámetros donde las partículas de materia oscura se podrían ocultar. Pero el fracaso a la hora de encontrarlas ha llevado a un renovado interés por el estudio de lo bien que los agujeros negros primordiales -agujeros negros formados en primera fracción de segundo del universo- podrían funcionar como materia oscura”.

Los físicos creen que hay varias formas en que el universo temprano, muy caliente y en rápida expansión, pudo producir agujeros negros primordiales en la primera milésima de segundo tras el Big Bang. Y cuanto más tarde se pusiera en marcha este mecanismo, mayores serían los agujeros negros “fabricados” por el Universo recién nacido. Dado que la “ventana” para crear estos agujeros negros dura apenas una fracción de segundo, los agujeros negros primordiales, según los investigadores, deberían de estar todos dentro de un estrecho rango de masas.

Ondas gravitacionales, la primera pista

Resultado de imagen de ondas gravitacionales ejemplos

El Observatorio LIGO (Laser Interferometer Gravitational-Wave Observatory), hace algún tiempo que detectó las ondas gravitacionales causadas por la fusión de dos agujeros negros a 1.300 millones de años luz de distancia. Fue la primera vez que se lograba detectar las ondas gravitacionales que había predicho Einstein hace un siglo, pero también fue la primera detección directa de un agujero negro en toda la historia de la Ciencia. La señal captada por los investigadores aportó información sobre las masas de los dos agujeros negros en proceso de fusión: 29 y 36 masas solares, respectivamente. Valores inesperadamente grandes y, sobre todo, sorprendentemente similares.

Imagen relacionada

“Según cuál sea el mecanismo que está actualdo -explica Kashlinsky- los agujeros negros primordiales podrían tener propiedades muy similares a las detectadas por LIGO. Si asumimos que ese es el caso, y que LIGO captó la fusión de dos agujeros negros nacidos en el universo temprano, entonces podemos estudiar las consecuencias que esto tiene en nuestra comprensión de cómo el cosmos, en última instancia, evolucionó”.

En su nuevo trabajo, Kashlinsky analiza lo que podría haber sucedido si la materia oscura realmente consiste en una gran población de agujeros negros similares a los detectados por LIGO. Esos agujeros negros, por ejemplo, distorsionaron la distribución de la masa en el universo temprano, añadiendo una pequeña fluctuación que tuvo consecuencias cientos de millones de años más tarde, cuando las primeras estrellas empezaron a formarse.

Resultado de imagen de La materia caliente del universo primordial

Durante los primeros 500 millones de años de existencia del Universo, la materia ordinaria estaba demasiado caliente como para unirse y formar las primeras estrellas. Pero la materia oscura no resultó afectada por la temperatura ya que, debido a su propia naturaleza, no depende de la radiación e interactúa fundamentalmente a través de la gravedad. Agregándose a causa de esta atracción gravitatoria, la materia oscura se agrupó primero en estructuras llamadas “mini halos”, lo que proporcionó una serie de “semillas gravitacionales” alrededor de las cuales la materia ordinaria pudo ir acumulándose. Así, el gas caliente (la materia ordinaria) se fue acumulando alredodor de los “mini halos”, dando lugar a “paquetes” de gas lo suficientemente densos como para colapsar sobre sí mismos y formar las primeras estrellas.

Kashlinsky observa que si efectivamente los agujeros negros son la materia oscurael proceso de formación estelar sucedería más rápidamente y se producirían con más facilidad las irregularidades en la luminosidad del fondo cosmico observadas en el rango de los infrarrojos por el telescopio Spitzer. Y esto sería así incluso si solo una pequeña parte de los “mini halos” estuviera produciendo estrellas.

Resultado de imagen de Halos de materia oscura

Por supuesto, los agujeros negros también capturarían una parte del gas caliente que era atraído lor los “mini halos”. Esa materia, se recalentaría según se fuera acercando a los agujeros negros y terminaría, también, por producir rayos X. Juntas, la luz infrarroja procedente de las primeras estrellas y los rayos X emitidos por la materia atraída por los agujeros negrosproducirían los mismos efectos que los científicos han observado en los brillos en CIB y el CXB.

De vez en cuando, además, alguno de estos agujeros negros primordiales pasaría lo suficientemente cerca de otro como para ser capturado por su gravedad y formar un sistema binario. Durante eones, los dos agujeros negros de esos sistemas binarios se orbitarían mutuamente, para terminar fundiéndose en uno solo, como el encontrado el año pasado por los detectores LIGO.

“Las futuras observaciones de LIGO -afirma Kashlinsky- nos dirán mucho más sobre la población de agujeros negros en el Universo, y no hará falta demasiado tiempo para saber si el escenario que propongo se sostiene o no”.

La Naturaleza misteriosa

Autor por Emilio Silvera    ~    Archivo Clasificado en La Naturaleza...El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

En unas minas de uranio en Oklo, Gabón, hace 1.700.000.000 años, se produjeron reacciones en cadena moderadas por agua, y de forma natural se formaron pequeños reactores nucleares. Estudiando este fenómeno podemos aprender algo sobre cómo almacenar residuos nucleares a larguísimo plazo. En relación a este hecho histórico se me ha ocurrido buscar más información y ponerla aquí para ustedes con el título de:

Un Reactor Nuclear de la prehistoria

Resultado de imagen de Un reactor nuclear prehistórico

Habiendo leído uno de los libros de John D. Barrow, recordé que en él, por alguna parte, venía recogido un suceso muy interesante que paso a relatar corroborando así que, nunca llegamos a conocerlo todo y, en este caso, es la Tierra la que nos ha dado la sorpresa.

“El 12 de Junio de 1972 el doctor Bouzigues, hizo un descubrimiento preocupante, el tipo de descubrimiento que podía tener incalculables explicaciones políticas, científicas e incluso delictivas. Bouzigues trabaja en la planta de procesamiento de combustible nuclear de Pierrelatte, en Francia. Una de sus tantas rutinas consistía en medir la composición de menas procedentes de minas de Uranio próximas al río Oklo, en la antigua Colonia francesa ahora conocida como la República Africana Occidental de Gabón, a unos 440 km de la costa Atlántica.

Una y otra vez comprobaba la fracción de mineral natural que estaba en forma de isótopo de uranio-235 comparada con la fracción en forma de isótopo de Uranio-238, para lo que realizaba análisis de muestras de hexafluoruro de uranio gaseoso. La diferencia entre los dos isótopos es crucial. El Uranio que se da en forma natural y que extraemos del interior de la Tierra está casi todo en forma de Isótopo 238. Esta forma de Uranio no producirá una cadena de reacciones nucleares autosostenidas. Si lo hiciera, nuestro planeta habría explotado hace mucho tiempo.

Para hacer una bomba o una reacción en cadena productiva es necesario tener trazas del isótopo activo 235 de Uranio. En el Uranio Natural no más de una fracción de un 1 por 100 está en forma 235, mientras que se requiere aproximadamente un 20 por 100 para iniciar una cadena de reacciones nucleares. El Uranio “enriquecido” contiene realmente un 90 por 100 del isótopo 235. Estos números nos dejan conciliar un sueño profundo por la noche con la seguridad de que por debajo de nosotros no se va a iniciar espontáneamente una interminable cadena de reacciones nucleares que convierta la Tierra en una bomba gigantesca. Pero ¿quién sabe si en algún lugar habrá más 235 que la media?

Resultado de imagen de Un Reactor Nuclear natural

¿Sabías que, escondido en una montaña en Gabón, África se encuentra el reactor nuclear más potente y antiguo del planeta, con más de 1.8 billones de años de antigüedad?

Boziguez midió con gran precisión la razón de isótopo 235 frente a 238. Eran comprobaciones importantes de la calidad de los materiales que en última instancia se utilizarían en la industria nuclear francesa. El suyo era un trabajo rutinario, pero ese día de Junio de 1972 su atención a los detalles se vio recompensada. Advirtió que algunas muestras presentaban una razón 235 a 238 de 0,717 por 100 en lugar del valor normal de 0,720 por 100 que se encuentra normalmente en todas las muestras terrestres, en incluso en meteoritos y rocas lunares. Tan exactamente se conocía el valor “normal” a partir del experimento, y tan exactamente estaba reflejado en todas las muestras tomadas, que esta pequeña discrepancia hizo sonar los timbres de alarma. ¿Dónde  estaba el 0,003 por 100 que faltaba de Uranio 235? Era como si el Uranio ya hubiese sido utilizado para alimentar un reactor nuclear de modo que la abundancia de 235 se había reducido antes de haber sido extraído de las minas.

Uranio

La Comisión de Energía Atómica de Francia consideró todo tipo de posibilidades. ¿Quizá las muestras habían sido contaminadas por algún combustible ya utilizado procedente de la planta de procesamiento? Pero no había ninguna prueba de la intensa radiactividad que habría acompañado al combustible usado, y ningún hexafluoruro de Uranio reducido faltaba en el inventario de la Planta.

Pero a poco las investigaciones descubrieron que la fuente de la discrepancia estaba en los propios depósitos naturales del Uranio. Había una baja razón 235 a 238 en las vetas de la mina. Se estudio todo el proceso y recorrido del Uranio desde su extracción hasta su transporte al lugar de destino, y, todo era correcto, nada extraño podía influir en la discrepancia descubierta. El Uranio procedente de la Mina de Oklo era simplemente distinto del que se encontraba en cualquier otro lugar.

Resultado de imagen de El Uranio procedente de la Mina de Oklo

Cuando se investigó con detalle el emplazamiento de la Mina pronto quedó claro que el Uranio 235 que faltaba había sido destruido dentro de las vetas de la Mina. Una posibilidad era que algunas reacciones químicas lo hubiesen eliminado mientras dejaban intacto el 238. Por desgracia, las abundancias relativas de Uranio 235 y 238 no se ven afectadas de forma diferente por procesos químicos que hayan ocurrido en el interior de la Tierra. Tales procesos pueden hacer que algunas partes de la Tierra sean ricas en mineral de Uranio a expensas de otras partes al disolverlo y transportarlo, pero no alteran el balance de los dos isótopos que constituyen el mineral disuelto o en suspensión. Sólo las reacciones y desintegraciones nucleares pueden hacerlo.

Juan Leyva

Los subproductos de Oklo han sido usados para realizar varios experimentos científicos. Quizás el más famoso sea uno en que se intentó comprobar si las velocidades de desintegración de los isótopos hace 1.700 millones de años eran diferentes a las de ahora (parece que no, pero los resultados no fueron concluyentes).

Poco a poco, la insospechada verdad salió a la luz ante los investigadores. Las vetas bajas en Uranio-235 contenían las pautas características de otros 30 o más elementos atómicos que se forman como subproducto de las reacciones de fisión nuclear. Sus abundancias eran completamente diferentes de las que se dan en forma natural en rocas donde no hubieran ocurrido reacciones de fisión. La reveladora firma de los productos de fisión nuclear se conoce a partir de los experimentos en reactores construidos por el hombre. Seis de estas vetas características de la actividad de un Reactor Nuclear Natural fueron finalmente identificadas en Oklo. Algunos de los elementos presentes, como el neodimio, tienen muchos isótopos pero no todos son productos de la fisión. Los que no son productos de fisión proporcionan por consiguiente una calibración de la abundancia de todos los isótopos antes de que empezaran las reacciones naturales y de este modo nos permite determinar los efectos y tiempos característicos de dichas reacciones.

Sorprendentemente, parecía que la Naturaleza había conspirado para producir un Reactor Nuclear Natural que había generado reacciones nucleares espontáneas bajo la superficie de la Tierra hace dos mil millones de años. Fue este episodio de la historia geológica de Gabón lo que había llevado a la acumulación de productos de fisión en el emplazamiento actual de la misma.

Las primeras reacciones nucleares producidas por el hombre se produjeron el 2 de diciembre de 1942 como parte del famoso Proyecto Manhattan que culminó con la fabricación de las primeras bombas atómicas.”

Después de leer el relato histórico del suceso que, sin ninguna duda, nos revela la certeza y posibilidad de que, en cualquier momento, se pueda producir otro suceso similar de cuyas consecuencias nadie puede garantizar nada, uno se queda preocupado y puede pensar que, aquel suceso, no llegó a más debido a una serie de circunstancias que concurrieron y, desde luego “el ambiente oxidante necesario que aportase el agua requerida para concentrar el uranio fue originado por un importante cambio de la biosfera de la Tierra. Hace dos mil millones de años ocurrió un cambio en la atmósfera, producido por el crecimiento de algas azul-verdosas, los primeros organismos de producir fotosíntesis.

Resultado de imagen de Un Reactor Nuclear natural

Claro que eso, sería entrar en otras historias. Sin embargo, no debemos olvidar que, en nuestro planeta, todo está relacionado y por lo tanto, los cambios y mutaciones que se puedan producir en la Naturaleza de la misma, influyen, de manera irreversible, en todo lo demás.

Esperemos que ningún Reactor Nuclear Natural se vuelva a poner en marcha, ya que, de ser así, no sabemos si se darán las precisas condiciones necesarias para que no continúe indefinidamente su actividad y nos mande a todos al garete.

¡La Naturaleza! que no nos avisa con el tiempo suficiente de lo que piensa hacer mañana y, el ejemplo más cercano lo tenemos con el terrible terremoto acaecido en el territorio de los antiguos mayas.

emilio silvera