jueves, 25 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo siempre asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 http://2.bp.blogspot.com/-EWkminHkVOk/ThuAP-Do5XI/AAAAAAAAAzU/gm_fBGp_T4c/s1600/Fractal_10.jpg

 

  

 

 

 

 

Cuando en la noche oscura y estrellada miramos hacia la esfera celeste que nos envuelve y podemos admirar la multitud de puntitos brillantes que, por causa de la atmósfera terrestre parecen titilar, como enviándonos mensajes que no sabemos descifrar, en realidad, esa imagen cotidiana no nos lleva hacia lo que realmente estamos viendo, hacia la grandeza que allí se oculta y, hacia los sucesos asombrosos que, en cualquiera de aquellas estrellas, por insignificante que pudiera ser, se están produciendo continuamente. Allí se están fusionando los elementos Hidrógeno en Helio y el Helio, con ayuda del Berilio y, como consecuencia del efecto Triple Alfa, en Carbono… ¡Además de muchos más procesos y transiciones!

Dos vistas de grupos de galaxias en luz natural y el luz infrarroja (ESA/NASA/JPL-Caltech/CXC/McGill Univ.)

El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos cúmulos de galaxias que, al colisionar con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Pero está claro, como digo, que todo el proceso estelar evolutivo nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas en las que se crean moléculas, se forman estrellas nuevas y mundos. La Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Resultado de imagen de Australopithecus ramidus

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

                                        Microcristales de arcilla

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Resultado de imagen de Los Quarks dentro del núcleo atómico

Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

                                                  Los átomos se juntan para formar moléculas

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

            Ya son muchas decenas de moléculas encontradas en las nubes interestelares

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales spdfgh. Este pequeño número nos proporciona una gran diversidad.

Atomos

Download Atomos (132Wx101H)

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?

Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presene en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diesmilésima… ¡La Vida no sería posible!

Resultado de imagen de NGC 3603 - Clúster de explosión de es

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todos los rangos, tamaños, composiicón y colores: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

Resultado de imagen de La supernova titánica, llamada SN 1987A

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

Resultado de imagen de Sher 25

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima).  ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.

Resultado de imagen de La supernova titánica, llamada SN 1987A

            Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

Resultado de imagen de La densidad de una estrella de neutrones

Algunos apuestan por la existencia de estrellas de Quarks pero, no se ha visto ninguna

La densidad de estas estrellas es increiblemente grande (8×1017 kg/m3), tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra. Es decir, que fácilmente la densidad de una E.N. pudiera ser de unas 500.000 veces la masa de la Tierra y tener un diámetro de sólo un par de decenas de kilómetros.   Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

+

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

                          El remanente estelar después de la explosiòn puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

foto

   ¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del trabajo me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

universo

En lugares como este, los astrofísicos encuentran un lugar ideal para estudiar sus componentes como si de un Laboratorio natural se tratara. Moléculas de diversos pelajes y elementos aquí presentes que sorprenden en no pocas ocasiones al ver que, en este medio inhóspito de radiación y viento estelares, pueden surgir los ingredientes necesarios para la vida. Los astrónomos tienen localizadas una buena variedad de Nubes Moleculares Gigantes. Son Nubes masivas de gas y polvo interestelar compuesto fundamentalmente por moléculas. Su diámetro típico es de más de 100 años-luz y las masas varian entre unos pocos cientos de miles hasta diez millones de masas solares.

                     Las primeras estrellas aparecieron después de cientos de millones de años

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras evolucionar a partir de la “materia inerte”,  apareciéramos nosotros.

                               Algunos investigadores dicen que el Universo no tiene principio ni fin

Sin embargo, hasta donde sabemos, todo en el Universo tiene un principio y un final y, el mismo universo tuvo que nacer y evolucionar para que hoy podamos contemplar, mediante nuestros sofisticados telescopios, un universo en expansión lleno de galaxias que contienen estrellas nuevas y viejas estrellas, muchas de ellas rodeadas de mundos que, aún no hemos podido determinar de qué criaturas estarán poblados muchos de ellos.

Resultado de imagen de La materia oscura del Universo  ¿dónde estará?

También una vez, en un reportaje de prensa salía ésta imagen y hacía alusión a la materia osura

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las otras (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinossólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias y si el Big Bang, el modelo de universo que hemos adoptado, es cierto. Es decir, si fue realmente lo que ocurrió aquí para que naciera nuestro universo, o, por el contrario, este pudo surgir de una fluctuación de vacío que rasgo el espacio-tiempo en otro universo. Pero, sigamos con la historia.

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la materia como si no existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón que a la vez que emite un electrón  (β) y un antineutrino electroníco. Es un proceso mediante el cual un nucleido o núcleo inestable  emite una partícula beta (un electrón o positrón) para compensar la relación de neutrones y protones del núcleo atómico.  Esta desintegración viola la paridad.

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

        Sólo una sustancia cósmica lo invadía todo antes de que formara la materia

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark. La asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

Estas partículas –las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parece que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven a las mil maravillas.

A partir del momento en que se formaron los primeros átomos, estos se unieron para formar moléculas y cuerpos. Pasados cientos de miles de años, millones y millones que el Universo necesitó para forjarse como un un Sistema cerrado coherente, lleno de materia situada en grandes espacios vacíos, donde las cuatro fuerzas fundamentales lo regían todo. Desde entonces, el universo se pobló de fantásticas configuraciones surgidas de la energía devastadoras de las primeras supernovas y colisiones de agujeros negros y un sin fin de fenómenos que ahora podemos observar con los grandes telescopios.

                 Galaxias que atraídas por la fuerza de gravedad se fusionan

Bellas Nebulosas que son el resultado de grandes explosiones de estrellas moribundas que lanzan sus materiales al espacio interestelar.

http://img.irtve.es/imagenes/hs-2010-22-a-large-web/1278435787749.jpg

      Formaciones en cúmulos de estrellas que producen  el asombro de los Astrónomos

Monstruos cósmicos que, en forma de agujeros negros, enguyen a las estrellas vecinas para hacerse más y más grande

     Miles y millones de galaxias que se reparten por todas las regiones del Universo “infinito”

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

Y pasado más de 13.000 millones de años, en un planeta rocoso de escasa importancia en el contexto del universo inmenso, aparecímos nosotros, unas criaturas egoistas e instintivas que, caminamos por el planeta durante milenios forjando Civilizaciones, inventando la escritura y las matemáticas, logrando forjar un saber encomiable sobre la Astronomía que nos cuenta, lo que pudo pasar desde el comienzo del Tiempo.

Sí, es cierto que, si somos sinceros, hay que reconocer que andamos un poco perdidos y que las preguntas, son infinitamente más que las pocas respuestas que podemos dar. Nuestra ignorancia es grande pero, nuestra imaginación es mayor y, poco a poco, ésta última le está ganando la batalla a la primera, ese peso que la Humanidad lleva sobre sus hombros desde la noche de los tiempos.

emilio silvera

¿Qué cosas hay que leer!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Descubierta la primera galaxia sin materia oscura

 

Un grupo internacional de astrónomos observa una extraña galaxia que puede cambiar las teorías sobre cómo se forman estas agrupaciones estelares

 

materia oscura
NGC1052-DF2, la galaxia más extraña de la historia
Reconstrucción de la galaxia difusa NGC1052-DF2 GEMINI OBSERVATORY/NSF/AURA/KECK/JEN MILLER

Si uno conoce las leyes gravitatorias y observa una galaxia, descubrirá que rota mucho más rápido de lo que debería. La masa de sus estrellas no basta para impulsarla hasta la velocidad que alcanzan. Esta discordancia hizo pensar que existía una materia distinta, que no emitía ni reflejaba luz, y que vistos sus efectos sobre la gravedad, era más abundante que la convencional. Nunca se ha detectado de forma directa, pero el encaje de las observaciones indirectas con las teorías gravitacionales hace muy plausible su existencia. Se ha encontrado en todas las galaxias estudiadas. Salvo en una.

Resultado de imagen de Descubren una galaxia sin materia oscura

                                 Otra de las imágenes que nos ofrecen de esta extraña galaxia

Hoy, en la revista Nature, un equipo internacional de científicos liderado por Pieter van Dokkum, de la Universidad de Yale (EE UU), publica la primera observación de una galaxia sin materia oscura (o al menos con la misma materia oscura que materia visible): NGC1052-DF2. Ese hallazgo sorprendente podría cambiar la idea que se tiene sobre la formación de las galaxias.

Uno de los planteamientos más aceptados implica que la materia oscura tiene un papel fundamental en el origen de las galaxias. Las acumulaciones de grumos de esta sustancia adquieren tirón gravitatorio y forman halos de materia oscura que empiezan a atrapar gas. Cuando hay una cantidad suficiente, se encienden las estrellas y poco a poco aparecen galaxias como la que nos da cobijo. La nueva galaxia pone en duda, al menos, que ese modelo sea el único.

Imagen relacionada

En las explicaciones que nos dan, aparecen imágenes como ésta e arriba que quieren significar la materia oscura. Sin embargo, todos sabemos que nadie sabe, a ciencia cierta, si en realidad existe y cómo podría ser, de qué partículas está conformada, etc.

Los investigadores detectaron por primera vez la acumulación de estrellas con el Dragonfly Telescope Array, un telescopio construido a medida en Nuevo México (EE UU) para capturar la luz de estas “galaxias ultradifusas”. Después, los telescopios hawaianos Gemini y Keck permitieron analizar con detalle los movimientos de algunos grupos de estrellas de NGC1052-DF2. Se desplazaban más despacio de lo esperado, algo que se podía explicar si solo contasen con la masa que se veía desde los observatorios y no existía una gran cantidad de materia oscura produciendo una aceleración extra. Van Dokkum considera que este descubrimiento confirma que la materia oscura es real, que tiene “una existencia separada independiente de otros componentes de las galaxias”.

Imagen relacionada

         Según nos dicen, las galaxias que tienen abundante materia oscura se localizan mucho mejor

Sven Heinemeyer, investigador del IFCA y el IFT, reconoce que el artículo “le ha sorprendido bastante”. Para él, como para los autores, las implicaciones más interesantes son las que tienen que ver con la dinámica de formación de galaxias. “Creemos que entendemos cómo se formaron las galaxias y el papel de la materia oscura es central”, señala. “Pero parece que puede haber circunstancias en las que se formen galaxias sin materia oscura”, añade. “Estas galaxias superdifusas parecen ser algo muy especial, que pudo formarse en una región del universo en la que había poca materia oscura”.

En cualquier caso, advierte de que, aunque muy interesante, “se trata solo de una observación”. Ahora, tanto los autores del trabajo como otros grupos de astrónomos de todo el mundo tratarán de buscar más galaxias sin materia oscura. Van Dokkum y sus colegas ya han analizado imágenes de 23 de estas peculiares galaxias difusas y tres comparten características con NGC1052-DF2. En los próximos meses, los telescopios hawaianos las escrutarán para comprobar si también forman parte de esta nueva especie galáctica.