miércoles, 12 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La atmosfera de la Tierra es la vida

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La atmósfera de la Tierra = a la vida

La atmósfera terrestre (troposfera y estratosfera) es tan delgada que, dibujando el planeta con un diámetro de 10 cm, tendría un espesor de unos 0’4 milímetros, equivalente al grosor de una línea de lápiz. Sin embargo, esta delgada capa gaseosa posee una importancia crítica para mantener el balance energético de la Tierra.

El planeta es adecuado para el desarrollo de la vida debido a que su atmósfera el llamativamente diferente de la de sus vecinos más próximos. La atmósfera de Venus está compuesta en un 96 por ciento de CO2, con un 3’5 por ciento de nitrógeno y trazas de gases nobles. La atmósfera de Marte contiene un 95’3 por ciento de CO2, un 2’7 por ciento de nitrógeno, 1’6 por ciento de argón y también trazas de agua y O3. Una atmósfera parecida a la terrestre determinaría que en la superficie marciana la temperatura sería superior a los 200º C y la presión de unos pocos MPa. En tales condiciones no podría existir vida compleja basada en el carbono con tejidos húmedos.

Hay pocas dudas de que la primera atmósfera de la Tierra contuviera abundante CO2, pero no está claro si su posterior desaparición se debió exclusivamente a procesos geoquímicos inorgánicos (sobre todo a la pérdida de ácido carbónico), o si los primeros organismos fueron importantes en la posterior conversión de CO2 en sedimentos de CaCO3. Parece claro, por el contrario, que la fotosíntesis llevada a cabo inicialmente por bacterias fue la responsable de la transformación de la atmósfera sin oxígeno en el Arcaico.

El aumento de oxígeno comenzó a acelerarse hace unos 2.100 millones de años y el actual nivel del 20 por ciento se alcanzó hace unos 300 millones de años. El aumento del oxígeno troposférico permitió la formación de ozono estratosférico, que protegió la biosfera de la energética radiación UV de longitudes de onda inferiores a 295 nm. Sin esta protección no hubiera sido posible la evolución de plantas y animales más complejos, ya que si la radiación UV de frecuencias menores ya mata los gérmenes y quema la piel, la de frecuencias altas es letal para la mayoría de los organismos.

Leer más

¿Eterno? Nada, ni el UNiverso lo es.

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es el de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior formando una nebulosa planetaria, mientras que el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre debe poner los medios para que antes de que llegue ese momento (dentro de algunos miles de millones de años), la Humanidad pueda escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, tenga agua corriente por estar situados en la zona habitable y tengan la atmósfera y las temperaturas adecuadas para acogerla.

Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Según los datos con loos que contamos, la Densidad Crítica del Universo puede ser la ideal para que se expanda para siempre.

El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten la vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Leer más

Algún día sabremos como funciona el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la Física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el Universo.  Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general.   Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.

Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espaciotiempo.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hacho única y exclusivamente a partir de dicha distorsión.  Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión.  La distorsión genera más distorsión sin la ayuda de la materia.  Esta es la esencia del agujero negro.

Leer más

La tecnología de vacío en la simulación espacial

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Con el lanzamiento del primer satélite Sputnik comenzó una nueva tecnología que ha permitido a la Humanidad explorar el Universo físicamente. Este alo se ha cumplido el 40 aniversario de la llegada del hombre a la Luna. De todos los esfuerzos realizados en ese empeño de conquistar el espacio exterior, como fue el primer Martizaje por la sonda Viking, o la puesta en marcha del proyecto internacional común para la construcción  de la Estación Espacial Internacional, o la puesta en orbita del Telescopio Espacial Hubble, el envio de los ingenios robotizados al sistema de Saturno de la Cassini y la Huygens (entre otros muchos), ha posibilitado que al dia de hoy, sepamos mucho mas de nuestro entorno, del Universo que nos acoge y de los objetos que lo pueblan y, cada dia que pasa, las esperanzas de colonizar otras Tierras crecen en posibilidades reales al mismo tiempo que crece el conocimiento de lo que por ahí fuera existe.

La ventana abierta hacia el espacio nos acerca al conocimiento que tenemos sobre nosotros mismos y hemos podido llegar a comprender que, estamos hechos del material fabricado en las estrellas. No olvidamos que formamos parte del Sistema Solar en el planeta Tierra y que estamos, por tanto, rodeados de vació, en medio de fuerzas gravitatorias y electromagnéticas, que convierten nuestro planeta en una maravillosa perla azul inmersa en un vasto territorio negro.

Fruto de las necesidades de conocimiento sobre el espacio exterior que nos rodea y aquel otro mas profundo y lejano, hace surgir la necesidad y el planteamiento de buscar nuevas formas de conocerlo, El espacio esta esencialmente “vacío”. Parece por tanto evidente, que los avanzados sistemas de vació actuales puedan ayudarnos a comprender mejor los procesos y sucesos que ocurren fuera de la atmósfera terrestre. No solo en el espacio interestelar, sino también sobre la superficie de muchos de los planetas y objetos celestes en los que su presión atmosférica sea menor que la terrestre. Así, un sistema de vació puede ser un entorno adecuado donde recrear diferentes ambientes espaciales, controlando algunos de los parámetros físicos del sistema para poder aprender sin necesidad de desplazarnos materialmente.

Todos sabemos la enorme complejidad que presentan las misiones espaciales y el elevado numero de inconvenientes que conllevan, sobre todo su elevado coste y, la no fiabilidad sobre la garantía del éxito de la misión que, al tener que desarrollarse en un ambiente hostil y en condiciones, casi siempre precarias donde pueden surgir agentes no deseados, hace imposible la seguridad de la misión y de su resultado final.

Leer más

El funcionamiento de las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La temperatura de las estrellas, en ultimo término, dependerá de la estrella de que se trate y de qué parte de ella estemos hablando. Más del 99 por 100 de las estrellas -como nuestro Sol- podemos saber que pertenecen a una clasificación llamada secuencia principal, y al hablar de la temperatura de la estrella queremos decir, por lo general, la temperatura de su superficie. Empecemos por aquí.

Toda estrella tiene una tendencia a “colapsar” (derrumbarse hacia el interior) bajo su propia atracción gravitatoria, pero a medida que lo hace, aumenta la temperatura en su interior. Y al calentarse el interior, la estrella tiende a expandirse. Al final se establece el equilibrio y la estrella alcanza un cierto tamaño fijo . Cuanto mayor es la masa de la estrella, mayor tiene que ser la temperatura interna para contrarrestrar esa tendencia al colapso; y mayor también, por consifuiente, la temperatura superficial.

El Sol que es una estrella de tamaño medio, tiene una temperatura superficial de 6.000 ºC. Las estrellas de masa inferior tienen temperaturas superficiales más bajas, algunas de sólo 2.500 ºC.

Las estrellas de masa superior tienen temperaturas más altas: 10.000 ºC, 20.000 ºC y más. Las estrellas de mayor masa, y por tanto más calientes y más brillantes, tienen una tenmperatura superficial constante de 50.000 ºC como mínimo y quizá más. Me atrevereía a decir que que la temperatura superficial constante más alta posible de una estrella de la secuencia principal es de 80.000 ºC.

Leer más