jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los átomos… Las estrellas… ¡Nuestra curiosidad! II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para definir el color de una estrella, Johnson y Morgan (1950), crearon el sistema UBV (del inglés Ultravioleta, Azul, Visible). Las mediciones se realizaban mediante un fotómetro fotoeléctrico para medir la intensidad de la radiación el longitudes de onda específicas:

"SpaceNet

  • Ultravioleta: 3000 Å a 4000 Å
  • Azul: 3600 Å a 5500 Å
  • Visual: 4800 Å a 6800 Å

Con estos datos se pudo crear una serie de escalas: (B-V), (U-B) y (B-V). Cuanto mayor el número, más roja es la estrella. Para ver ejemplos de índices de color de diferentes estrellas, visite la sección de estrellas variables.

La tabla a continuación muestra el espectro electromagnético, con sus longitudes de onda.

Espectro electromagnético - Wikipedia, la enciclopedia libre

Denominación Longitud de Onda
Rayos Gamma 0.00000007 a 0.001 Å
Rayos X 0.001 a 100 Å
Luz Ultravioleta 100 a 3900 Å
Luz Visible 3900 a 7500 Å
Luz Infrarroja (fotográfica) 7500 a 15000 Å
Infrarrojo Cercano 15000 a 200000 Å
Infrarrojo Lejano 0.002 a 0.1 cm.
Microondas (ondas de radar) 0.1 a 250 cm.
Frecuencias elevadas () 2.5 a 15 m.
Onda corta de radio 15 a 180 m.
Banda de control aeronáutico 750 a 1500 m.
Onda larga de radio 1500 m en adelante

Las escalas son las siguientes:

1 Å (Ångstron) = 1×10-8 cm  = 1×10-10 m (metros)

El ojo humano solo es capaz de percibir la pequeña porción que corresponde a la luz visible, situada entre los 3900 Å y 7500 Å, donde la menor se encuentra cerca del violeta y la mayor del rojo. El Sol emite en todas las longitudes de onda, pero solo llegan a la superficie una pequeña porción de estas, las demás son frenadas por la atmósfera: el ozono absorbe las mas altas longitudes de onda hasta el ultravioleta, y el vapor de agua absorbe gran parte de las infrarrojas.

Espectro electromagnético - Wikipedia, la enciclopedia libre

En el Observatorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres , la mayoría, empleadas como miembros del personal de una facultad que les impedía asistir a clases u obtener un título.

Henrietta Leavitt: la astrónoma cuyos cálculos ayudaron a medir el tamaño  del universo – ANRed

Una de esas mujeres, Henrietta Leavitt (arriba), fue la investigadora pionera de las estrellas variables cefeidas que tan útiles serían a Shapley y Hubble, ella fue una de esas “calculadoras” de Harvard que, se encargaban de examinar las placas y registrar los datos en una pulcra escritura victoriana para su compilación en volúmenes como el Henry Draper Catalogo, así llamado en honor al primer astro-fotógrafo y físico que tomó las primeras fotografías del espectro de una estrella. Como presos que marcan el paso de los días en los muros de su celda, señalaban su progreso en totales de estrellas catalogadas. Antonia Maury, sobrina de Draper, contaba que había clasificado los espectros de más de quinientas mil estrellas. Su labor era auténticamente baconiana, del tipo que Newton y Darwin instaban a hacer pero raramente hicieron ellos, y las mujeres se enorgullecían de ella. Como afirmaba la “calculadora” de Harvard Annie Jump Cannon: “Cada dato es un facto valioso en la imponente totalidad”.

Precisamente fue Cannon quien,  en 1915, empezó a discernir la forma de esa totalidad, cuando descubrió que la mayoría de las estrellas pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación (ahora generalizado en la astronomía estelar), ordena los espectros por color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta las estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacto danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, Las Híades y las Pléyades. Los cúmulos como estos son genuínos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta el amarillo apagado.

Pléyades (astronomía) - Wikipedia, la enciclopedia libre

                        Las Pléyades

Las Híades en Tauro

                      Las Híades

Puesto que puede suponerse que todas las estrellas de un cúmulo están a la misma distancia de la Tierra, toda diferencia observada en sus magnitudes aparentes pueden atribuirse, no a una diferencia en las distancias, sino en las magnitudes absolutas. Hertzsprung aprovechó este hecho para utilizar los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell. Claro, como cabía esperar, la aplicabilidad del método pronto se amplió también a estrellas no pertenecientes a cúmulos.

Diagrama de Hertzprung-Russell

 Henry Norris Russell, un astrofísico de Princeton con un enciclopédico dominio de su campo, pronto se puso a trabajar justamente en eso. Sin conocer siquiera el trabajo de Hertzsprung, Russell diagramó las magnitudes absolutas en función de los colores, y halló que la mayoría están a lo largo de una estrecha zona inclinada: el trondo del árbol de estrellas. El árbol ha estado creciendo desde entonces y hoy, está firmemente grabado en la conciencia de todos los astrónomos estelares del mundo. Su tronco es la “serie principal”, una suave curva en forma de S a lo largo de la cual se sitúan entre el 80 y el 90 por 100 de todas las estrellas visibles. El Sol, una típica estrella amarilla, está en la serie principal a poco menos de la mitad del tronco hacia arriba. Una rama más fina sale del tronco y se esxtiende hacia arriba y a la derecha, donde florece en un ramillete de estrellas más brillantes y más rojas: las gigantes rojas. Debajo y a la izquierda hay una cantidad de mantillo de pálidas estrellas entre azules y blancas: las enanas.

                 El Diagrama de  Hertzsprung-Russell resumido

Este diagrama proporcionó a los astrónomos un registro congelado de la evolución, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aun de estrellas de vida corta, se mide en millones de años. Hallar las respuestas exigirá conocer toda la física del funcionamiento estelar.

El progreso de la Física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas…Pero eso, amigos, es otra historia que os contaré en otro momento.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting