martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Lo que pasó? ¿Lo que pasará? o, simple imaginación

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  electrones

 Disco circumnuclear de La Galaxia

  

 

 

“Imaginaos ahora este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el navío del Universo.”

 

Esas palabras de William Chakespeare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros para extrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “transparente” que sí emite la fuerza gravitatoria podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.

 

Científicos crean neuronas capaces de integrarse en el tejido cerebral
¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno, muchos miles de Millones de años más tardes, en mundos perdidos en sistemas solares como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?
               La materia “inerte” evolucionó hasta la vida
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.

                        Sitios como este, en nuestro planeta, los tenemos en multitud de lugares

No pocas veces me encuentro mirando al cielo nocturno estrellado desde la orilla del Atlántico cuya superficie brilla con millones de luces titilando al reflejar el resplandor de la Luna, la inmensidad del océano que se pierde en el horizonte y, la infinitud del firmamento me podrían hacer sentir insignificante.  Sin embargo, no es así como lo siento.  He dicho alguna vez que todo lo grande está hecho de cosas pequeñas, y, esa afirmación, nos dá la respuesta.  Formamos parte de algo muy grande:  El Universo.

A veces, a solas con mis pensamientos, no puedo dejar de cavilar sobre esa idea que rige como Modelo “inamovible” al que llaman Big Bang, nos cuentan de a partir de un punto de densidad y energías “infinitas”, surgió nuestro Universo, y, en el momento del suceso, no existían ni el Espacio ni El Tiempo. El desarrollo del Modelo nos habla de energías inconmensurables y de cómo se fueron formando, a partir de las partículas elementales, otras más complejas que formaron átomos y más tarde cuerpos.

         Nada puede surgir de la “nada”, si surgió, es porque había

Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang.  Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del Universo.

A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.

Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, deca-dimensional, un mundo en el que el viaje inter-dimensional era posible.  Sin embargo, ese mundo deca-dimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.

El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva,

ESPACIO CÓSMICO | Amor, paz caridad

       Surgió la sustancia cósmica de la que, miles de millones de años más tarde, nacería la consciencia

Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo.  La energía que impulsa la expansión observada del Universo se halla entonces en el colapso del espacio-tiempo de diez dimensiones.  Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.

Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada.

Ese Universo de diez dimensiones, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación. Claro que, si las galaxias siguen alejándose las unas de las otras, será la muerte térmica del universo, y, en ese escenario, ni los átomos se moverán.

          Todo quedará quieto, congelado en los -273 ºC, la Densidad Crítica que se vislumbra nos habla de la muerte térmica del Universo

Para el cosmólogo, la única certeza es que el Universo morirá un día.  Algunos creen que la muerte final del Universo llegará en la forma del Big Crunch. La gravitación invertirá la expansión cósmica generada por el Big Bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial.  A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos. Esta teoría parece que ha dejado de tener “creyentes” y, casi todos los expertos se decantan por la muerte térmica. Las Galaxias se alejan las unas de las otras, el universo está en continua expansión y, el frío, se apodera más y más de todo el Cosmos, así, cuando se alcancen los -273 ºC… ‘Todo se acabará!

La Muerte Térmica del Universo

Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más da! No habrá escape. Y, sabiendo lo que ahora sabemos, conociendo la historia del universo mismo que, durante miles de millones de años ha estado fabricando materiales en las estrellas para que los seres vivos conscientes pudieran venir, ¿Cómo imaginar un final así? ¿Para qué tanto trabajo y tanto tiempo perdido? Seguramente, para cuando eso puede ir llegando, si es que la inteligencia sigue aquí, habrá buscado ya la manera de escapar a tal desastre y, las especies inteligentes se salvarán saltando a otros universos, o, incluso, ¿por qué no? viajando hacia atrás en el Tiempo, hacia otras épocas de tiempos más benignas para tener otros miles de millones de años por delante y hacer las cosas, de manera diferente. ¡Una segunda oportunidad!

                                     Bertrand Russell

Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo.  Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.

Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final. Ese atisbo de esperanza está en nosotros mismos, es decir, si somos capaces de no destruirnos antes, si procuramos comprender los mensajes que el universo nos envía continuamente, si desvelamos secretos de la Naturaleza que nos posibilitarán para hacer cosas, ahora inimaginables, entonces y solo entonces, habrá alguna esperanza.

La sustancia Cósmica ( EL SER ) es... - Filán-topos 5060 20 | Facebook

          Poder escapar a universos conexos que, como el nuestro, nos de cobijo

Gerald Feinberg especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch.  En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje inter-dimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.

Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad, podría ser testigo de la muerte del Universo que la vio nacer y florecer.

                                   Son muchas las cosas que no sabemos

Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y el tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes:

¿Cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría de hiperespacio?

¿Y qué sucede con otras formas de vida inteligente en el Universo, que puedan haber alcanzado ya este punto?

Lo que hace interesante esa discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina en los sistemas estelares o incluso las galaxias vecinas hayan sido colonizadas.  Aunque la escala de energía necesaria para manipular el Hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentara, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).

2009 SERÁ EL AÑO INTERNACIONAL DE LA ASTRONOMÍA | ESO EspañaESA Science & Technology - Año Internacional de la Astronomía  2009 - Poster

             Año Internacional de la Astronomía y, por aquellos días, pude aprender muchas cosas

Somos conscientes de que el Tiempo inexorable sigue su implacable caminar y la Entropía, que sabe hacer bien su trabajo, lo transforma todo, lo que ayer era una cosa, hoy se ha convertido en otra distinta, irreconocible, y, sin embargo, ese deterioro natural no es algo perdido, sino que, por el contrario, hasta que llega ese final, se hizo un trabajo que dará sus frutos en la mente de otros seres, en las cosas mismas que, transformadas, servirán y tendrán cometidos nuevos. Nada se pierde y todo tiene su por qué. La Naturaleza no hace nada porque sí, todo está programado y tiene un fin. Y, si eso es así (que los es), ¿que nos deparará el destino a nosotros? Habiendo llegado al nivel de comprensión alcanzado, no creo que el final sea el de la desaparición sin más, algo más debe estar oculto en los designios de la Naturaleza que no llegamos a comprender.

Ahora, sin temor a equivocarnos, podemos decir que tenemos en Mundo en las manos. No existen ningún rincón de la Tierra que se nos escape y con el que no podamos contactar en unos instantes. Tampoco existen aquellas largas separaciones de seres queridos en largos viajes, ni existe ningún problema para saber de alguna cosa que, incluso con imágenes podemos obtener al instante con sólo preguntar. En cuanto a los nuevos métodos de trabajo en la computación, es algo de increíble eficacia e impensada realidad hace sólo unos pocos años. ¿Qué decir de los nuevos materiales? La medicina ha dado un salto cualitativo gracias a los avances del CERB y el mismo LHC, los viajes espaciales ha mejorado nuestr0 confort en la vida cotidiana y del hogar…

Con el LHC queremos llegar muy lejos, tanto como al corazón del Big Bang. Sin embargo, no tiene energía suficiente para ello, y, de momento, dicen haber descubierto un Penta-quark que, vaya usted a saber que es eso. De todas las maneras, hoy por hoy, es lo mejor que tenemos para profundizar en el corazón de la materia y… ¡En algún secretillo más del Universo!

Cada 10/15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que, el avance superará todas las previsiones.  Tecnologías que hoy solo son un sueño (la energía de fusión o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro.  Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del Hiperespacio.

Viaje en el tiempo.  Universos paralelos.  Ventana dimensional.

¡Sueños! Claro que, si echamos una atenta mirada a la Historia veremos que, muchos sueños se hicieron realidad.

emilio silvera

Cosas de la Mecánica Cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo lo material que existe en la Naturaleza, no se dejan ver ni hacen posible que podamos observar (a ojo desnudo) las maravillas que pueden llevar a cabo,

Las sustancias formadas por una sola clase de átomos se llaman elementos químicos, y, si está conformada por distintos átomos, son compuestos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.

A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su forma esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.8836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos hacia el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, para lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.

Claro que, no debemos olvidarnos de que, ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos infinitesimales que juntos, hace ese gran todo.

Electrostática: | Más cerca de Albert EinsteinLey de Coulomb - Wikipedia, la enciclopedia libre

La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. Cuando uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.

http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif

La perfecta sincronía Está en la Naturaleza

No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.

Radiación electromagnética - Wikipedia, la enciclopedia libreRadiaciones electromagnéticas | Fundación CIENTEC

Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

Ch 13 Quantum Mechanical Model Electron Configuration QuantumPlanck's Equation E = hv

Donde E es la energía del paquete, v la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Efecto fotoeléctrico - Wikipedia, la enciclopedia libreMecánica cuántica - Wikipedia, la enciclopedia libre

   Los cuantos de energía están presentes por todas partes y en todos los objetos

Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.

Constante de Planck - Wikipedia, la enciclopedia libreLa relatividad de Einstein. La relatividad especial y general.1 - Curso de Relatividad General - YouTubeLa Teoría de la Relatividad podría no ser la única para explicar la  gravedad - Ciencia - ABC Color

Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial como general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no puede por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza.

emilio silvera