sábado, 21 de julio del 2018 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo se formaron las galaxias? ¡Nadie lo sabe!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 ALMA observa cómo se forman las galaxias en el universo temprano

“ALMA observa cómo se forman las galaxias en el universo temprano. Image Credit: ESO”

 Dicen debajo de la Imagen:

“ALMA consiguió captar una señal tenue, pero clara, de carbono (que brillaba intensamente) de una de las galaxias, llamada BDF2399. Sin embargo, este resplandor no provenía del centro de la galaxia, sino más bien de uno de sus lados.”

 

 

Resultado de imagen de "El Atacama Large Millimeter/submillimeter Array (ALMA)

 

 

“El Atacama Large Millimeter/submillimeter Array (ALMA) se ha utilizado para detectar las nubes de gas con formación estelar más distantes encontradas hasta ahora en galaxias normales del universo temprano. Las nuevas observaciones permiten a los astrónomos empezar a ver cómo se construyeron las primeras galaxias y cómo despejaron la niebla cósmica en la época de reionización. Esta es la primera vez que pueden verse este tipo de galaxias como algo más que manchas difusas.”

Ninguna de estas explicaciones nos demuestran cómo se formaron las galaxias en verdad, a pesar de la presencia de la expansión cósmica del universo que habría hecho dispersar la materia que estaban destinadas a formas esas galaxias, ¿Qué había allí, para retener la materia y que las galaxias se pudieran formar?

En los temas que hemos tratado en otros trabajos, la protagonista ha sido la “hipotética” materia y energía oscura que, según algunos modelos supone el 90% de la materia que compone el Universo. El tema dio pie a diversas opiniones y algún debate que principalmente llevaron adelante Kike, Fandila y Nelson que, con sus imaginativas ideas y maneras de aplicar la lógica, nos llevaron de la mano (con alguna metáfora incluida), a que podamos comprender mejor como son las cosas que, no siempre, coinciden con la realidad que algunos nos dibujan. Y, nuestra obligación, aunque el dibujo sea hermoso, armonioso y hasta placentero, es la de desconfiar, y, tomarlo, tan sólo como algo posible, algo que podría ser pero que de momento no es. Acordaos de aquel sabio que nos dijo: “Todas las cosas son”. Con aquella simple frase, elevó a las “cosas” a la categoría de ser. Claro que las cosas a las que se refería estaban allí y podíamos contemplarlas. Por el contrario, la “materia oscura” nadie la vio nunca, es algo imaginario y supuesto que, al parecer, nos señalan algunos indicios observados, por lo demás, nada podemos concretar de ella.

http://4.bp.blogspot.com/-Dqs8usE-D6o/TZOh0uJE-eI/AAAAAAAAGp8/EqGzNCfQ7Rw/s1600/ngc5584_hst.jpg

Nuestro Universo es tan complejo que, seguramente, todo lo que hemos podido saber de él, es sólo una pequeñísima parte de lo que es. Quizá el inmenso trabajo y esfuerzo, el ingenio de muchos, la intuición de algunos, la genialidad de unos pocos, el avance, costoso avance en el campo de las matemáticas, todo ello unido como un todo, nos ha traído hasta aquí, un momento en el que, se podría decir sin temor a equivocarnos que estamos en la línea de partida para comenzar el camino hacia más grandes logros. Creerse más que eso, sería engañarnos a nosotros mismos, dado que, la cruda realidad es que sabemos menos de lo que creemos y decimos que sabemos.

Arriba contemplamos la conocida y familiar imagen de una Galaxia y, si alguien nos preguntara como pudieron formarse las galaxias, la verdad sería que, no tendríamos contestación para esa pregunta. ¿Cómo es posible eso a estas alturas? Pués porque lo que podemos resumir de la moderno visión del universo se podría limitar a dos breves afirmaciones: Primera; el universo ha estado expandiéndose desde que se formó, y en el proceso ha evolucionado desde las estructuras simples a las complejas. Segunda: la materia visible en el universo está organizada jerárquicamente: las estrellas agrupadas en galaxias, las galaxias en cúmulos y los cúmulos en supercúmulos. El problema al que nos enfrentamos por tanto, es comprender como un universo  cuya evolución está dominada por la primera afirmación, puede llegar a tener la estructura descrita en la segunda afirmación.

El problema de no poder explicar la existencia de la galaxias ha resultado ser uno de los más espinosos de la cosmología. Con todo derecho no deberían estar ahí y, sin embargo, ahí están. Es difícil comunicar el abismo de frustración que este simple hecho produce entre los científicos. Una y otra vez han surgido nuevas revelaciones y ha parecido que el problema estaba resuelto. Cada vez la solución se debilitaba, aparecían nuevas dificultades que nos transportaban al punto de partida.

Resultado de imagen de Las primeras galaxias

Para que se formaran las primeras galaxias, alguna clase de “sustancia cósmica” que generaba gravedad, tenía que estar presente, ya que, de otra manera, no podemos explicar que en un Universo en expansión se pudieran formar.

Cada pocos años, la American  Physical Society, la Asociación Profesional  de físicos, tienen una sesión en una de sus reuniones en la que los Astrofísicos hablan de los más nuevos métodos de afrontar el problema de las galaxias. Si te molestas en asistir a varias de esas reuniones, dos son las sensaciones contradictorias que te embargan: Por una parte sientes un gran respeto por la ingenuidad de algunas propuestas que son hechas “de corazón” y, desde luego, la otra sensación es la de un profundo excepticismo hacia las ideas que proponían, al escuchar alguna explicación de cómo las turbulencias de los agujeros negros, las explosiones durante la formación de galaxias, los neutrinos pesados y la materia oscura fría resolvía todos aquellos problemas.

Lo cierto es que, a pesar de lo que se pueda leer en la prensa en comunicados oficiales, todavía no tenemos ese “bálsamo milagroso” que nos permita responder a una pregunta simple: ¿Por qué está el cielo lleno de galaxias?

http://www.educarm.es/templates/portal/ficheros/websDinamicas/32/cumulosdegalaxias.jpg

Es cierto, el cielo está lleno de cúmulos de galaxias y nosotros, tratándo de saber de su presencia allí, hemos llegado a conseguir eliminar muchas de las respuestas equivocadas. Podemos estar ahora mucho más cerca de la verdad de lo que lo estábamos antes. Pero, de ninguna manera sería bueno que nos dejémos adormecer por la credulidad de los postulados modernos que parecen “sacados de la manga” del jugador cosmológico, para que la partida salga redonda. Claro que, una cierta dosis de excepticismo no implica que no podamos aceptar como probables y ciertas, algunas de las ideas generales implícitas en las soluciones propuestas que podrían, al final de todo el camino, ser parte de la solución que buscamos.

Formalmente podríamos exponer aquí al menos cinco razones para tratar de justificar el por qué, las galaxias, no deberían estar ahí presentes.

1º) Las Galaxias no pueden haberse formado antes que los átomos. No es un asunto trivial. Durante muchísimos años se estuvo tratando de entender este proceso, comezándo con ideas mágicas, hasta que a principios del siglo XIX se empezó a a comprender como funcionan las estrellas y el Universo.

http://1.bp.blogspot.com/-EHg4VjZ0CjY/Tp1Ybl6ETOI/AAAAAAAAABY/5sJUmSQb2-A/s1600/El-Universo+02.jpg

Es un proceso algo complicado, por eso se tardo tanto en reconocerlo. En este momento la mejor teoria que explica el Universo es que comenzo con el Big-Bang, la explosion inicial que dio origen a todo. En la explosion, de origen todavia incierto, habia pura energia, y al expandirse se fue enfriando, como lo haria cualquier gas. Al llegar a un nivel de energia un poco mas bajo del inicial, se pudieron condensar de la energia las primeras particulas elementales (protones, neutrones, etc). Esto ocurrio en los primeros minutos. La famosa ecuacion de Einstein E = mc al cuadrado, implica que se puede transformar materia en energia, como en un reactor nuclear, y tambien la energia puede condensarse en materia, como en este caso. A los 300 mil años, el nivel de energia fue lo suficientemente bajo como para permitir la formacion de los primeros atomos.

Resultado de imagen de La formación de los primeros átomos del universo

La existencia protoneselectrones y neutrones dispersos, que cuando se juntaron fue para formar los elementos quimicos mas elementales: Hidrogeno, Helio y algo de litio. Nada mas se formo, en la proporcion de 75% de hidrogeno, casi 25% de helio, y trazas de los otros elementos.

Resultado de imagen de El Universo joven todo opaco y denso

                   Tuvieron que pasar mucho millones de años para que nacieran las primeras estrellas

Aquella primera “sopa de plasma primordial” posibilitó que se juntaran protones y neutrones para formar el elemento más simple del Universo: El Hidrógeno,

Así, podemos partir de la base cierta de que, hasta donde sabemos, podemos pensar en el Universo durante aquellas primeras etapas de la expansión de Hubble estaba formado por dos únicos constituyentes: materia y radiación. La materia sufrió una serie de congelaciones al construir  gradualmente  estructuras más y más complejas. A medida que tienen lugar estos cambios en la formación de la materia, la manera en que interaccionan, materia y radiación cambian radicalmente. Esto, a su vez, desempeña un papel fundamental en la formación de galaxias.

“Gracias a las sondas COBE (Cosmic Background Explorer) y WMAP (Wilkinson Microwave Anisotropy Probe)w1 que han cartografiado la distribución de la radiación cósmica de fondo, los astrónomos han creado una “fotografía” del Universo tal y como era aproximadamente 400.000 años después del Big Bang. La información obtenida gracias a COBE supuso el Premio Nobel de Física de 2006 para John Mather y George Smoot.”

 La segunda imagen: El cielo de un Universo primitivo creado a partir de los datos obtenidos durante cinco años por WMAP. La imagen muestra fluctuaciones de temperatura hace 13.700 millones de años (las zonas rojas están más calientes y las azules más frías) que corresponden a las semillas que crecieron enforma de galaxias

 

 

 

Efectos de la reionización

 

La luz y otros tipos de radiación interaccionan fuertemente con partículas libres eléctricamente cargadas, del tipo de las que existían en el plasma que constituía el universo antes de que los átomos se formara. A causa de esta interacción, cuando la radiación se mueve por este plasma, colisiona con partículas, rebotando y ejerciendo una presión del mismo modo que las moléculas de aire, al rebotar sobre las paredes de un neumático, mantienen el neumático inflado. Si se diese el caso de que una conglomeración de materia del tamaño de una galaxia tratase de formarse antes de la congelación de los átomos, la radiación que traspasaría el material habría destruído el conglomerado, y, la radiación tendería a quedar atrapada dentro de la materia. Si tratase de salir, sufriría colisiones y rebotaría.

http://2.bp.blogspot.com/-9Q9hEhkreuc/T7GJp5Nf_AI/AAAAAAAAAiU/GLhfUwr3dRE/s1600/Radiactividad+y+radiaci%C3%B3n_html_ed09f3b.jpg

2º) Las galaxias no tuvieron tiempo de formarse. La Gravedad es la gran fuerza desestabilizadora del Universo, Nunca lo abandona del todo; siempre está actuando tratando de unir trazos de materia, En cierto sentido, la historia entera del Universo se puede pensar como un último y futil intento de superar la Gravedad.

Sería asombroso, dada la naturaleza universal de la fuerza gravitatoria, que no hubiera desempeñado un papel importante en la formación de las galaxias. Escribir sobre este apartado nos llevaría a tener que explicar muchas implicaciones que están presentes en la dinámica del universo en relación a la materia. De todas las maneras que la queramos mirar, la sensación que percibimnos es la de que, en aquellos primeros momentos, podía existir “algo” (no sabemos qué) que generaba también, como la materia bariónica normal, fuerza gravitatoria.

http://farm3.staticflickr.com/2273/1813695464_ab42701060_z.jpg?zz=1

        Inmensas turbulencias que generaban fuerzas eléctricas y moldeaba la materia y todo el entorno

3º) La turbulencia tampoco nos vale. El Impulso a través de la turbulencia es una idea simple, cuyas primeras versiones fueron aireadas alrededor de 1950. El postulado es: cualquier proceso tan violento y caótico como las primeras etapas del Big Bang no será como un río profundo y plácido, sino como una corriente de montaña, llena de espuma y turbulencias. En este flujo caótico podemos esperar encontrar remolinos y vórtices de gas. Lo cierto es que, en este maremagnun, era de todo punto imposible que las galaxias se pudieran formar.

Resultado de imagen de Cúmulos de galaxias

4º) Las Galaxias no han tenido tiempo para formar cúmulos. Quizá estamos encontrando dificultades porque consideramos el problema de las galaxias desde un punto de vista muy estrecho. Quizá lo que deberíamos hacer es ver las cosas en una escala más grande y esperar que si entendemos como se forman los cúmulos de galaxias, la génesis de las galaxias individuales, se resolverá por sí misma. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones muy grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre como puede haber sido el universo cuando los átomos se estaban formando es que no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama modelo isotérmico.

Imagen relacionada

Explicar aquí las implicaciones matemáticas a que nos llevaría explicar el modelo isotérmico, estaría bien pero, no parece imprescindible para finalizar este trabajo que, de manera sencilla, sólo trata de explicar que, las galaxias no se pudieron formar conforme a lo que hemos observado y sabemos del Universo, algo nos falta por saber y, alguna fuerza “oculta” debería haber estado allí presente para evitar que, la materia se dispersara con la expansión de Hubble y las galaxias se pudieran formar.

Imagen relacionada

5º) Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmicas sería contradictoria. Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿dónde hubiera estado? siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta.

Supongamos que en el comienzo del universo materia y radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la Física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

Sabemos que,  para hacer galaxias,  la materia del universo tuvo que estar muy bien distribuída en agregados cuando se formaron los átomos. Pero, todo este resultado choca con uno de los hechos más notables del universo que conocemos. Si consideramos la radiación de microondas, que llega hasta nosotros desde la dirección del Polo Norte de la Tierra, y luego nos volvemos y miramos la radiación que viene  del Polo Sur, encontramos que son casi completamente idénticas. De esta notable uniformidad se deduce que cuando la radiación se despareja de la materia deberá de estar muy uniformemente distribuida por todo el universo.

El resultado final es este: lo que el proceso de formación de galaxcias requiere del entorno de microondas y lo que observamos de su uniformidad son cosas diametralmente opuestas. Lo primero requiere radiación para ser reunida con la materia; así, si la materia estuviera agrupada cuando los átomos se formaron, habría trazas de esa agrupación en el fondo cósmico de microondas de hoy.

Por otra parte, la uniformidad observada en el entorno de microondas implica que la radiación nunca podría haber estado tan agrupada; si lo hubiera estado, hoy no sería uniforme. Cuando se hacen detallados cálculos numéricos, los astrofísicos encuentran que es imposible conciliar estas dos exigencias en conflicto. La radiación de microondas no puede ser uniforme y no uniforme al mismo tiempo.

http://www.nasa.gov/centers/goddard/images/content/377609main_blackhole_diet_HI.jpg

Todos los razonamientos anteriores nos llevan a pensar y demuestran muy claramente que, no podemos dar por supuesto un universo lleno de galaxias y, si de hecho lo está, debemos buscar la causa real que lo hizo posible. Explicar ese universo ha sido mucho más difícil de lo que muchos llegaron a pensar y, como se dice en el título de este trabajo, no tenemos una explicación, ni las razones de peso que justifiquen la presencia de las galaxias.

¿Qué había y estaba presente en el comienzo del Universo, que nosotros desconocemos pero que, hizo posible que las galaxias se pudieran formar?

Yo no lo se.

Estamos de nuevo en el punto de siempre: Nuestros conocimientos son limitados. Nuestra ignorancia… ¡Infinita!

emilio silvera

 

  1. 1
    Pedro
    el 7 de julio del 2018 a las 9:58

    Pregunta:Acerca de la expansión y energía del propio vacio. Si resulta que la densidad media en el universo es de un atomo por m3. ¿Como puede mantenerse esa densidad media constante? Si el propio espacio vacío continuamente se va expandiendo y aun más se está acelerando.
    Salvo que ese nuevo espacio creado también tenga el potencial de crear más espacio y por tando tanto partículas virtuales como reales . Manteniendo la densidad constante.
    Si la naturaleza continuamente crea espacio eso significa que continuamente algo se está delimitando, perdiendo, no conservando. Todo un anticipo de un fin claustrofobico y estrepitoso.
     

        ¿Cuál es el envés de tanto energía potencial?: Construcción y posterior destrucción inminente. Y ¿Que pintamos en todo esto? Lo mismo que un reservista en un equipo, hacer bulto y poco más.

    Responder
  2. 2
    Emilio Silvera
    el 8 de julio del 2018 a las 7:47

    Amigo Pedro: Lo cierto es que, saber lo que se dice saber contestar a todas las preguntas planteadas… ¡Nadie sabe! Se hacen estudios y se sabe que la densidad del Universo está muy próxima a la Densidad Crítica, es decir, que estamos en un Universo plano que, con 1 átomo por m3 de espacio seguirá expandiéndose indefinidamente y las galaxias estarán, cada vez, las unas más alejadas de las otras, y, se supone que llegará un momento en el que, el Universo alcance la temperatura de -273 ºC, es decir, se produciría la muerte térmica, ni los átomos se podrían mover, toda la energía quedaría “congelada”.

    Claro que si el Universo no deja de expandirse y hace un Espacio mayor, se debe entender que la densidad de materia bajaría, en caso contrario, si la materia se mantiene estable, quería decir que a medida que el Universo se expande la materia se va creando en una proporción que la mantiene estable.

    Ahora, en un último estudio que abarca el 1% del Universo y las galaxias que allí están contenidas, nos dicen que la proporción de energía oscura hace que el universo se expande cada vez más rápidamente, y, se publican opiniones tan peregrinas como…
    Todas estas afirmaciones

    El científico dijo que algunas explicaciones para la diferencia, es que la energía oscura, que acelera el cosmos, aleja a las galaxias una de la otra con fuerza mayor o creciente.

    que viaja cerca de la velocidad de la luz, denominadas en su conjunto “radiación oscura” e incluyen neutrinos, que se crean en reacciones nucleares y desintegraciones radiactivas.

    A diferencia de un neutrino normal, que interactúa por una fuerza subatómica, la nueva partícula se vería afectada sólo por la gravedad, llamada “neutrino estéril”.

    Riess y el grupo de expertos continuarán el trabajo para afinar la velocidad de expansión del universo, a fin de dar respuesta a esta discrepancia.La aceleración misma puede no tener un valor constante en el universo, sino que cambia con el tiempo en este.

    Otra teoría es que el universo tiene una nueva partícula subatómica que viaja cerca de la velocidad de la luz, denominadas en su conjunto “radiación oscura” e incluyen neutrinos, que se crean en reacciones nucleares y desintegraciones radiactivas.

    A diferencia de un neutrino normal, que interactúa por una fuerza subatómica, la nueva partícula se vería afectada sólo por la gravedad, llamada “neutrino estéril”.

    Todas estas afirmaciones, o al menos algunas de ellas, son tan peregrinas que rayan en la tontería. Sin embargo, lo publican y se quedan tan panchos, cuando lo que deberían decir es que, algunos aspectos del comportamiento del Universo para la ciencia (de momento), no tienen ninguna explicación.

    Responder
  3. 3
    Pedro
    el 8 de julio del 2018 a las 9:18

    Acerca de la muerte térmica, toda la energía congelada, átomos, electrones, protones, etc con carga eléctrica. Correcto.  ¿Como afectará tal expansión a las propias ondas  lectromagnéticas de la propia luz?  Quiero decir ¿si la luz seguira su viaje a c? O bien su longitud de onda tenderá a cero o su amplitud a cero. Y por tanto fin del cuento. Saludos

    Responder
  4. 4
    Emilio Silvera
    el 8 de julio del 2018 a las 11:03

    En presencia de calor podemos decir que existe el movimiento, ambos están asociados en una simbiosis de naturaleza vibratoria, de las moléculas. En su límite de Cero K (-273,15 ºC) dicho movimiento no existe y todo estaría quieto, estático y la realidad, tal como la conocemos, no tendría ningún sentido. Por eso Cero K, inalcanzable por definición, constituyen uno de los límites de la física.

    Ese hipotético punto, irreal, es conocido como el de la muerte térmica del Universo. El mismo dejaría de tener cualquier tipo de energía calorífica y en tal situación sería definitiva, técnicamente estaríamos en la máxima entropía, ligada al desorden máximo y la mínima energía interna del sistema llamado Universo.

    En tales circunstancias, de ausencia de energía, dudo que los fotones (energía al fín y al cabo), pudieran producir la luz que viaja a velocidades relativistas, es decir, C. Allí se acabaría todo pero… ¡Está por ver!

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting