lunes, 18 de febrero del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Física es la llave del futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Makoto Kobayashi (1944). Japón, que descubrió el origen de la ruptura de simetría que predice la existencia de, al menos tres familias de Quarks en la Naturaleza.


Toshihide Maskawa

Yoichiro Nambu, descubrió el mecanismo de riptura espontánea de la simetría

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Estos laureados con el Premio Nobel de Física de presentaron ideas teóricas que nos suministran una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.



La naturaleza de las leyes de simetría se encuentran en el corazón de este asunto. O más bien, la ruptura de las simetrías, tanto las que parecen haber existido en nuestro universo desde el principio como aquellas que han perdido su simetría original en alguna parte del camino. De hecho, todos somos hijos de la simetría rota. Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo para seguir buscando lo que no sabemos.

La mayoría de los físicos piensa que el llamado mecanismo de Higgs es el responsable de que la simetría original entre fuerzas fuera destruido dando a las partículas sus masas en las primeras etapas del universo. El camino hacia ese descubrimiento fue trazado por Yoichiro Nambu quien, en 1960, fue el primero en introducir la violación espontánea de la simetría en la física de partículas. Es por este descubrimiento por el que se le concede el Premio Nobel de Física.

Tenemos algunos ejemplos banales de violación espontánea de la simetría en la vida diaria. Un lápiz en equilibrio sobre su punta lleva una existencia totalmente simétrica en la cual todas las direcciones son equivalentes. Pero esta simetría se pierde cuando cae -ahora sólo una dirección cuenta-. Por otro lado su condición es ahora más estable, el lápiz no puede volver a caer, ha llegado a su nivel más bajo de energía.


El modelo que tenenos de la física de partículas se llama Modelo Estándard y, nos habla de las interacciones entre partículas y las fuerzas o interraciones que están presentes, las leyes que rigen el Universo físico y que, no hemos podido completar al no poder incluir una de las fuerzas: La Gravedad. Claro que, no es esa la única carencia del Modelo, tiene algunas más y, a estas alturas, se va necesitando un nuevo Modelo, más completo y audaz, que incluya a todas las fuerzas y que no tengá parámetros aleatorios allí donde nuestros conocimientos no llegan.

La fealdad del Modelo Estándar puede contrastarse con la simplicidad de las ecuaciones de Einstein, en las que todo se deducía de primeros principios. Para comprender el contraste estético entre el Modelo Estándar y la teoría de la relatividad general de Einstein debemos comprender que, cuando los físicos hablan de “belleza” en sus teorías, realmente quieren decir que estas “bellas” teorías deben poseer al menos dos características esenciales:

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de datos experimentales con las expresiones matemáticas más económicas.

E = mc2 . Esta es la mejor prueba de lo que decimos arriba.

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad general los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble.De hecho, desde que se publicó en 1.915, no ha dejado de dar frutos, y aún no se han obtenido de ella todos los mensajes que contiene.

El principio director del modelo estándar dicta que sus ecuaciones son simétricas. De igual modo que una esfera ofrece el mismo aspecto desde cualquier punto de vista, las ecuaciones del modelo estándar subsisten sin variación al cambiar la perspectiva desde la que son definidas. Las ecuaciones permanecen invariables, además, cuando esta perspectiva se desplaza en distinta magnitud a diferentes puntos del espacio y el tiempo.

Al contrario de la relatividad general, la simetría del Modelo Estándar, está realmente formada empalmando tres simetrías más pequeñas, una por cada una de las fuerzas; el modelo es espeso e incómodo en su forma. Ciertamente no es económica en modo alguno. Por ejemplo, las ecuaciones de Einstein, escritas en su totalidad, sólo ocupan unos centímetros y ni siquiera llenaría una línea de esta página. A partir de esta escasa línea de ecuaciones, podemos ir más allá de las leyes de Newton y derivar la distorsión del espacio, el Big Bang y otros fenómenos astronómicos importantes como los agujeros negros. Por el contrario, sólo escribir el Modelo Estándar en su totalidad requeriría, siendo escueto, un par de páginas  y parecería un galimatías de símbolos complejos sólo entendibles por expertos.

Los científicos quieren creer que la naturaleza prefiere la economía en sus creaciones y que siempre parece evitar redundancias innecesarias al crear estructuras físicas, biológicas y químicas.

 

La luz antigua absorbida por átomos de hidrógeno neutro podría usarse para probar ciertas predicciones de la Teoría de Cuerdas, dicen los cosmólogos de la Universidad de Illinois. Realizar tales medidas, sin embargo, requeriría que se construyese un gigantesco conjunto de radio telescopios en la Tierra, el espacio, o la Luna.

El matemático francés Henri Poincaré lo expresó de forma aún más franca cuando escribió: “El científico no estudia la Naturaleza porque es útil; la estudia porque disfruta con ello, y disfruta con ello porque es bella

E. Rutherford, quien descubrió el núcleo del átomo (entre otras muchas cosas), dijo una vez: “Toda ciencia es o física o coleccionar sello”.Se refería a la enorme importancia que tiene la física para la ciencia, aunque se le olvidó mencionar que la física está sostenida por las matemáticas que la explica.

Pero, a pesar de todos sus inconvenientes, el Modelo Estándar, desde su implantación, ha cosechado un éxito tras otro, con sus inconvenientes y sus diecinueve parámetros aleatorios, lo cierto es que es lo mejor que tenemos por el momento para explicar las familias de partículas que conforman la materia y cómo actúan las fuerzas de la naturaleza, todas las fuerzas menos la gravedad; esa nos la explica a la perfección y sin fisuras las ecuaciones de Einstein de la relatividad general.

Hace tiempo que los físicos tratan de mejorar el Modelo Estándar con otras teorías más avanzadas y modernas que puedan explicar la materia y el espacio-tiempo con mayor amplitud y, sobre todo, incluyendo la gravedad.Así que retomando la teoría de Kaluza de la quinta dimensión, se propuso la teoría de supergravedad en 1.976 por los físicos Daniel Freedman, Sergio Ferrara y Peter van Nieuwenhuizen, de la Universidad del Estado de Nueva York en Stoney Brook que desarrollaron esta nueva teoría en un espacio de once dimensiones.

Para desarrollar la superteoría de Kaluza-Klein en once dimensiones, uno tiene que incrementarenormemente las componentes del interior del Tensor métrico de Riemann (que Einstein utilizó en cuatro dimensiones, tres de espacio y una de tiempo para su relatividad general y más tarde, Kaluza, añadiendo otra dimensión de espacio, la llevó hasta la quinta dimensión haciendo así posible unir la teoría de Einstein de la gravedad, con la teoría de Maxwell del electromagnetismo), que ahora se convierte en el supertensor métrico de Riemann.

Hasta hoy, no se ha logrado, ni mucho menos, inventar una teoría de campo consistente totalmente unificadora que incluya la gravedad. Se han dado grandes pasos, pero las brechas «científicounificantes» siguen siendo amplias. El punto de partida ha sido siempre la teoría de la relatividad general y conceptos con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria macrocósmica. El problema que se presenta surge de la necesidad de modificar esta teoría sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo los problemas de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza.

Su tensor métrico es un tensor de rango 2 que se utiliza para definir … Sin embargo, en otras teorías se ha elevado el rango y se pueden definir múltiples universos de dimensiones más altas.

El tensor métrico se podría adaptar a las necesidades de la búsqueda estableciendo la multiplicidad de dimensiones que la teoría exigía para su desarrollo.

 

Más allá de lo que nos permiten captar nuestros sentidos físicos, hay que tener nuestra mente abierta a la posibilidad de que puedan existir otras realidades diferentes a lo que nos dicta nuestra experiencia, realidades capaces de ser descubiertas por la fuerza del intelecto cuando nos atrevemos a cuestionar aquello que creíamos como absoluto.

Esta nueva teoría de supergravedad pretendía la unificación de todas las fuerzas conocidas con la materia, y, como en un rompecabezas, encajarlas en el Tensor de Riemann tan solo con elevar el número de dimensiones que exigía más componentes y nos daba el espacio necesario para poder ubicar en sus apartados correspondientes, todas las fuerzas fundamentales y también la materia, la que podía satisfacer, casi en su totalidad, el sueño de Einstein.

A partir de aquí, de estas ecuaciones, surgió todo. Este fue el puerto de donde salió el bajel de la teoría de Kaluza-Gleim, la supergravedad y supersimetría, la cuerda heterótica y la Teoría de cuerdas, todo ello, rematado con la finalmente expuesta, teoría M. También, con el nacimiento de esta ecuación que es la imagen que mejor refleja hasta dónde puede3 llegar el intelecto humano, comenzó la verdadera cosmología.

La supergravedad casi consigue satisfacer el sueño de Einstein de dar una derivación puramente geométrica de todas las fuerzas y partículas del universo. Al añadir la supersimetría al Tensor métrico de Riemann, la métrica se duplica en tamaño, dándonos la supersimetría de Riemann. Las nuevas componentes del súper tensor de Riemann corresponden a quarks y leptones, casi todas las partículas y fuerzas fundamentales de la naturaleza: la teoría de la gravedad de Einstein, los campos de Yang-Mills y de Maxwell y los quarks y leptones. Pero el hecho de que ciertas partículas no estén en esta imagen nos obliga a buscar un formalismo más potente:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.

Antes de continuar con la teoría de súper cuerdas, o con su versión más avanzada la teoría M, parece conveniente recordar que hasta el momento los ladrillos del universo eran los quarks, las partículas más pequeñas detectadas en los aceleradores del CERN y FERMILAB. Pero ¿están hechos de cosas más pequeñas?, eso no lo sabemos. El Modelo Estándar, menos avanzado que las otras teorías, nos dice que los quarks son las partículas más pequeñas y forman protones y neutrones constituyendo la formación interna del átomo, el núcleo. En la actualidad, nuestros aceleradores de partículas no tienen capacidad para ahondar más allá de los quarks y averiguar si a su vez, éstos están formados por partículas aún más pequeñas.

 

No podemos saber (aún) que es lo que pueda haber (si es que lo hay) más allá de los Quarks, los constituyentes de la materia más pequeños conocidos hasta el momento actual. Sin embargo, no se descarta que puedan existir partículas más simples dentro de los Quarks que, al fin y al cabo, no serían tan elementales.

Por otro lado, los físicos están casi seguros de que los leptones no están compuestos de partículas más pequeñas. Sin embargo, esta sospecha no se tiene en el caso de los quarks; no se sabe qué puede haber detrás de ellos. Tan sólo se ha llegado a desconfinarlos junto con los gluones y por un breve periodo de tiempo de los protones y neutrones que los mantenían aprisionados, formando – en esos breves instantes – una materia plasmosa. No es raro oir dentro de la comunidad científica a los físicos teóricos hablando de prequarks.

Como antes hemos comentado de pasada, el Modelo Estándar agrupa las partículas en familias:

Claro, son muchos más. Además de los Bariones, también forman parte de la familia hadrónica los mesones y la lista de unos y otros es larga y cada individuo, como es natural, tiene sus propias características que lo hacen único.

Hadrones: Bariones: protón, neutrón , Lambda, omega, etc.
Mesones: pión, kaón, psí, etc.
Quarks: up, down, charmed, strange, top y botton
Leptones: electrón, muón y tau (y sus neutrinos asociados), neutrino electrónico, muónico y tauónico

Y describe las interacciones que estas partículas tienen con las cuatro fuerzas fundamentales de la naturaleza, sobre todo con las nucleares fuerte y débil y la electromagnética; la gravedad se queda aparte del Modelo Estándar, ya que su incidencia con las partículas elementales es inapreciable como consecuencia de las infinitesimales masas de éstas, y ya sabemos que la gravedad se deja sentir y se hace presente cuando aparecen las grandes masas como planetas, estrellas y galaxias.

Grandes estructuras que vienen a ser como pequeños ”universos islas” en los que podemos estudiar, a menos tamaño, todo lo que en el Gran Universo puede pasar. Partiendo de la base de que las leyes del universo son las mismas en todas partes, podemos tomar cualquier región del mismo y ver que, allí está ocurriendo lo mismo que aquí ocurre, es decir, están presentes las fuerzas fundamentales: nucleares débiles y fuertes, electromagnetismo y Gravedad y, todo, absolutamente todo, funciona al ritmo que dichas leyes nos marcan.

Como el Modelo Estándar es limitado, los físicos buscan desesperadamente nuevas teorías que puedan corregir y perfeccionar este modelo. Así aparecieron las teorías de súper simetría, súper gravedad, súper cuerdas, y ahora por último, la teoría M propuesta por Edward Witten en 1.995 y que nos quiere explicar, de manera más perfecta, el universo desde su origen, cómo y por qué está conformado ese universo, las fuerzas que lo rigen, las constantes de la naturaleza que establecen las reglas, y todo ello, a partir de pequeños objetos infinitesimales, las cuerdas, que sustituyen a las partículas del modelo estándar que creíamos elementales.

Esas partículas súper simétricas que pronostican algunas teorías, aún no han sido observadas y se espera que en el LHC puedan aparecer algunas que, desde luego, si así ocurre, sería un buen adelanto para conocer el mundo que nos acoge y la Naturaleza del Universo.

Esta nueva teoría, permite además, unificar o incluir la gravedad con las otras fuerzas, como teoría cuántica de la gravedad, todo ello mediante una teoría estructurada y fundamentada con originalidad y compactificación de las cuatro fuerzas de la naturaleza y dejando un gran espacio matemático para eliminar anomalías o perturbaciones, y se propugna con coherencia quela cuerda es el elemento más básico de la estructura de la materia; lo que estaría bajo los quarks serían unas diminutos círculos semejantes a una membrana vibrante circular y de diferentes conformaciones.

Universos Paralelos, Teorías de Cuerdas, Súper gravedad, La Teoría M, y ¿Los pensamientos de la Mente, podrán dar para tanto?

Una vez se escucha sobre los fundamentos de la teoría cuántica uno no puede mas que sobrecogerse, ampliar la mente y galopar entre las múltiples posibilidades acerca de lo real e imaginario que por momentos y depende que conceptos se entrelazan intercambiables. Lo que llama la atención es que por mucho que hayan sido los físicos cuánticos más prestigiosos entre la sociedad científica los que hayan puesto sobre la mesa conceptos cuanto menos rimbombantes e inverosímiles como las multi-dimensiones, los universos paralelos, los efectos túneles y demás, sean los propios miembros  de la academia los que grandilocuentemente se ofenden cuando se hace alusión al paralelismo evidente del comportamiento y extensión de la energía  en referencia al universo preconizado por los místicos de muchas culturas. No tenemos los conocimientos necesarios para poder decir que no a esto o aquello, cada cosa tiene su lugar y tendremos que analizarlas muy a fondo y adentrarnos en esos mundos de misterio para poder decidir lo que es y lo que no puede ser.

Aquí hemos llegado a una región de la Física de las partículas donde la energía (por partícula) es mucho mayor de la que actualmente podemos estudiar en nuestros laboratorios. Claro que especulamos, pero con los datos de los que disponemos, la realidad estará muy cerca de la expuesta en el gráfico, y, en él se señalan energía que no están a nuestro alcance para conseguir lo que se quiere saber.

Ed Witten, en su trabajo, presentó amplias evidencias matemáticas de que las cinco teorías obtenidas de la primera revolución, junto con la más reciente conocida como la súper gravedad (súper cuerda después), en 11 dimensiones, eran de hecho parte de una teoría inherentemente cuántica y no perturbativa conocida como teoría M. Las seis teorías están conectadas entre sí por una serie de simetrías de dualidad T, S, y U. Además, de la teoría propuesta por Witten se encuentran implícitas muchas evidencias de que la teoría M no es sólo la suma de las partes, sino que se vislumbra un alentador horizonte que podría concluir como la teoría definitiva tan largamente buscada.

 

Los resultados de la segunda revolución de las súper cuerdas han demostrado que las cinco teorías de cuerdas forman parte de un solo marco unificado, llamado Teoría M.

Las súper cuerdas, en realidad, sólo es otra manera utilizada por los científicos a la búsqueda de la verdad que la Humanidad necesita y reclama para continuar con su propia evolución que, sin esos conocimientos, quedaría estancada.

Como se puede ver, las partículas implicadas en el Modelo Estándar están en un mundo microscópico de 10-17cm que sí dominan nuestros aceleradores, mientras que la cuerda está en una distancia de 10-33 cm que les está prohibida, allí no podemos llegar, no disponemos de la energía suficiente para ello.

 

Igual que con la energía disponible por el momento, nos pasa con las distancias, que también nos tiene paralizados en nuestros deseos de visitar mundos lejanos, no podemos, al no disponer de los medios necesarios para poder soslayar las distancias de tantos años-luz como tendríamos que recorrer. ¿Habrá otro camino?

Está muy claro para los físicos que, aunque teóricamente, en la Teoría de Súper cuerdas se pueden unir todas las fuerzas, todavía tenemos que seguir sosteniendo que la gravedad resulta una fuerza solitaria para todos los efectos, ya que ha resistido todos los intentos para saber, con certeza, si finalmente se podrá unir a las otras fuerzas de la Naturaleza. La gravedad está descrita por la teoría de la relatividad general de Einstein y tiene una naturaleza esencialmente geométrica. Se entiende como la curvatura del espacio-tiempo alrededor de un objeto masivo. En los gráficos, generalmente, se representa como un objeto pesado sobre una superficie fina y tensa (una pelota o bola pesada de jugar a los bolos que dejamos encima de una sábana extendida tirando de las cuatro esquinas). El peso de la bola (materia) hundirá la sábana (espacio-tiempo) con mayor intensidad en la distancia más cercana a donde se encuentre masa.

 

El espacio tiempo se distorsiona allí donde residen objetos pesados como los planetas, las estrellas, galaxias y cualesquiera otros cuerpos masivos.

La teoría de Einstein goza de una amplia aceptación debido a los aciertos macroscópicos que han sido verificados de manera experimental. Los más recientes están referidos a los cambios de frecuencia de radiación en púlsares binarios debido a la emisión de ondas gravitacionales, que actualmente estudia Kip S. Thorne, en relación a los agujeros negros. Entre las predicciones que Einstein propugna en su teoría se encuentran, por ejemplo, la existencia de ondas gravitacionales, que el universo está en constante expansión y que, por lo tanto, tuvo un inicio: el Big Bang o los agujeros negros.

 

Se trata de regiones donde la gravedad es tan intensa que ni siquiera la luz puede escapar de su atracción. Estas regiones se forman por el colapso gravitatorio de estrellas masivas en la etapa final de su existencia como estrella, acabado el combustible nuclear y no pudiendo fusionar hidrógeno en helio, fusiona helio en carbono, después carbono en neón, más tarde neón en magnesio y así sucesivamente hasta llegar a elementos más complejos que no se fusionan, lo que produce la última resistencia de la estrella contra la fuerza de gravedad que trata de comprimirla, se degeneran los neutrones como último recurso hasta que, finalmente, la estrella explota en supernova lanzando al espacio las capaz exteriores de su material en un inmenso fogonazo de luz; el equilibrio queda roto, la fuerza de expansión que contrarrestaba a la fuerza de gravedad no existe, así que, sin nada que se oponga la enorme masa de la estrella supermasiva, se contrae bajo su propio peso, implosiona hacia el núcleo, se reduce más y más, su densidad aumenta hasta lo inimaginable, su fuerza gravitatoria crece y crece, hasta que se convierte en una singularidad, un lugar en el que dejan de existir el tiempo y el espacio.

Allí no queda nada, ha nacido un agujero negro y a su alrededor nace lo que se ha dado en llamar el Horizonte de Sucesos, que es una región del espacio, alrededor del agujero negro que una vez traspasada no se podrá regresar; cualquier objeto que pase esta línea mortal, será literalmente engullida por la singularidad del agujero negro. De hecho, el telescopio espacial Hubble, ha enviado imágenes captadas cerca de Sagitario X-1, en el centro de nuestra galaxia, donde reside un descomunal agujero negro que, en las fotos enviadas por el telescopio, aparece como atrapa la materia de una estrella cercana y se la engulle.

 

.Ondas gravitacionales que se forman a partir de los agujeros negros que, en su dinámica cotidiana y que, actualmente, estamos tratando de captar para saber de un njhuevo Universo que nos diría muchas cosas de las que ocurren a partir de fenómenos que sabemos existen pero, que hasta el momento no hemos podido “leer”.

Esta es la fuerza que se pretende unir a la Mecánica Cuántica en la teoría de supercuerdas, es decir, que Einstein con su relatividad general que nos describe el cosmos macroscópico, se pueda reunir con Max Planck y su cuanto infinitesimal del universo atómico, lo muy grande con lo muy pequeño.

 Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Relatividad y Gravedad Cuántica. Universidad de Cambridge.

La llamada gravedad cuántica trata de fundir en una sola las dos teorías físicas más soberbias con las que contamos, la relatividad general y la mecánica cuántica, que en el estado actual de nuestro conocimiento parecen incompatibles. Su estudio, ahora mismo, es en algunos aspectos análogo a la física de hace cien años, cuando se creía en los átomos, pero se ignaraban los detalles de su estructura.

Hasta el momento, Einstein se ha negado a esta reunión y parece que desea caminar solo. Las otras fuerzas están presentes en el Modelo Estándar, la gravedad no quiere estar en él, se resiste.

De hecho, cuando se ha tratadode unir la mecánica cuántica con la gravedad, aunque el planteamiento estaba muy bien formulado, el resultado siempre fue desalentador; las respuestas eran irreconocibles, sin sentido, como una explosión entre materia y antimateria, un desastre.

Sin embargo, es preciso destacar que las nuevas teorías de súper-simetría, súper-gravedad, súper-cuerdas o la versión mas avanzada de la teoría M de Ed Witten, tienen algo en común: todas parten de la idea expuesta en la teoría de Kaluza-Klein de la quinta dimensión que, en realidad, se limitaba a exponer la teoría de Einstein de la relatividad general añadiendo otra dimensión en la que se incluían las ecuaciones de Maxwell del electromagnetismo.

Hasta hoy no se ha logrado, ni mucho menos, inventar una teoría de campo que incluya la gravedad. Se han dado grandes pasos, pero la brecha “científicounificante” es aún muy grande. El punto de partida, la base, ha sido siempre la relatividad y conceptos en ella y con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria cósmica. El problema que se plantea surge de la necesidad de modificar esta teoría de Einstein sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo el problema de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza. Desde la primera década del siglo XX se han realizado intentos que buscan la solución a este problema, y que han despertado gran interés.

Después de la explosión científica que supuso la teoría de la relatividad general de Einstein que asombró al mundo, surgieron a partir e inspiradas por ella, todas esas otras teorías que antes he mencionado desde la teoría Kaluza-Klein a la teoría M.

 

                                      Esas complejas teorías cuánticas nos quieren acercar al misterio que encierra la materia: ¡El Espíritu de la Luz!

Es de enorme interés el postulado que dichas teorías expone. Es de una riqueza incalculable el grado de complejidad que se ha llegado a conseguir para desarrollar y formular matemáticamente estas nuevas teorías que, como la de Kaluza-Klein o la de supercuerdas (la una en cinco dimensiones y la otra en 10 ó 26 dimensiones) surgen de otra generalización de la relatividad general tetradimensional einsteniana que se plantea en cuatro dimensiones, tres espaciales y una temporal, y para formular las nuevas teorías se añaden más dimensiones de espacio que, aunque están enrolladas en una distancia de Planck, facilitan el espacio suficiente para incluir todas las fuerzas y todos los componentes de la materia, tratando de postularse como la Teoría de Todo.

   Dimensiones enrolladas ¿En un espaciotiempo fractal? La Naturaleza sabe de eso

La Gran Teoría Unificada que todo lo explique es un largo sueño acariciado y buscado por muchos. El mismo Einstein se pasó los últimos treinta años de su vida buscando el Santo Grial de la teoría del todo en la física, unificadora de las fuerzas y de la materia. Desgraciadamente, en aquellos tiempos no se conocían elementos y datos descubiertos más tarde y, en tales condiciones, sin las herramientas necesarias, Einstein no podría alcanzar su sueño tan largamente buscado. Si aún viviera entre nosotros, seguro que disfrutaría con la teoría de súper-cuerdas o la teoría M, al ver como de ellas, sin que nadie las llame, surgen, como por encanto, sus ecuaciones de campo de la relatividad general.

La fuerza de la Naturaleza, en el universo primitivo del Big Bang, era una sola fuerza y el estado de la materia es hoy conocido como “plasma”; las enormes temperaturas que regían no permitía la existencia de protones o neutrones, todo era como una sopa de quarks. El universo era opaco y estaba presente una simetría unificadora.

Más tarde, con la expansión, se produjo el enfriamiento gradual que finalmente produjo la rotura de la simetría reinante. Lo que era una sola fuerza se dividió en cuatro. El plasma, al perder la temperatura necesaria para conservar su estado, se trocó en quarks que formaron protones y neutrones que se unieron para formar núcleos. De la fuerza electromagnética, surgieron los electrones cargados negativamente y que, de inmediato, fueron atraídos por los protones de los núcleos, cargados positivamente; así surgieron los átomos que, a su vez, se juntaron para formar células y éstas para formar los elementos que hoy conocemos. Después se formaron las estrellas y las galaxias que sirvieron de fábrica para elementos más complejos surgidos de sus hornos nucleares hasta completar los 92 elementos naturales que conforma toda la materia conocida. Existen otros elementos que podríamos añadir a la Tabla, pero estos son artificiales como el plutonio o el einstenio.

                                  La materia ha evolucionado hasta límites increíbles: ¡la vida! y, aún no sabemos, lo que más allá pueda esperar.

                            ¿Quizás hablar sin palabras, o, Incluso algo más?

Estos conocimientos y otros muchos que hoy posee la ciencia es el fruto de mucho trabajo, de la curiosidad innata al ser humano, del talento de algunos y del ingenio de unos pocos, todo ello después de años y años de evolución pasando los descubrimientos obtenidos de generación en generación.

¿Cómo habría podido Einstein formular su teoría de la relatividad general sin haber encontrado el Tensor métrico del matemático alemán Riemann?

¿Qué formulación del electromagnetismo habría podido hacer James C. Maxwell sin el conocimiento de los experimentos de Faraday?

La relatividad especial de Einstein, ¿habría sido posible sin Maxwell y Lorentz?

¿Qué unidades habría expuesto Planck sin los números de Stoney?

 

En realidad… ¿Cómo comenzaría todo? Mientras encontramos la respuesta, observamos como el Universo se expande y se vuelve viejo y frío.

Así podríamos continuar indefinidamente, partiendo incluso, del átomo de Demócrito, hace ahora más de dos milenios. Todos los descubrimientos e inventos científicos están apoyados por ideas que surgen desde conocimientos anteriores que son ampliados por nuevas y más modernas formulaciones.

Precisamente, eso es lo que está ocurriendo ahora con la teoría M de las supercuerdas de Witten. Él se inspira en teorías anteriores que, a su vez, se derivan de la original de A. Einstein que pudo surgir, como he comentado, gracias al conocimiento que en geometría aportó Riemann con su tensor métrico.

emilio silvera

Son más las preguntas que las respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

                                                            Lo que pasará mañana… ¿Quién lo puede saber?

File:OrionCC.jpg

 

 

 

Hace mucho tiempo ya que la Humanidad sueña con la conquista del espacio y, para ello, lo primero que tenía que hacer era conocer lo que el Espacio es. Desde la lejanía se miraban las estrellas lejanas y eran muchas las preguntas que no se podían contestar. Más tarde, llegaron Galileo y otros antes y después de él, que con su ingenio pudieron desvelar muchos de aquellos misterios. Los grandes telescopios nos llevaron hacia el cielo profundo en las lejanas regiones del Universo y, entre otras muchas cosas, pudimos que más de cien moléculas diferentes “vivian” en las densas nubes de gas y polvo del medio interestelar. Muchas de ellas, para nuestro asombro, eran vitales para la formación y el surgir de la vida tal como la conocemos.

                                                        Arriba la Nebulosa Cabeza de Caballo en Orión

De estas moléculas, ochenta y tres contienen carbono, entre las que se encuentran el ácido cianhídrico HCN, el amoníaco NH3 y el formaldehído H2CO. Moléculas precursoras que generalmente conducen a los aminoácidos. Para verificar que la síntesis de aminoácidos en las del medio interestelar es posible, una mezcla de hielo de agua, amoníaco, metanol, monóxido y dióxido de carbono ha sido irradiada en el Laboratorio de Astrofísica de Leyde en Holanda, en condiciones que imitan a las del medio interestelar (vacío impulsado de 10-7 mbar, y temperatura de -261°C).

A todo esto, ahora podemos contemplar nuestro propio planeta visto el espacio y, la belleza de la imagen nos lleva a pensar que, en realidad, es la uténtica joya del Sistema . Ninguno de los planetas o lunas, conforman un conjunto similar de belleza física en la que se juntan una serie de parámetros espaciales que la hacen singular. De hecho, tan singular es que, la vida consciente está ahí presente. A veces, como nuestra imaginación es inquieta, y pensamos -es inevitable- en la existencia de otros mundos habitados, nos podemos preguntar:

Pero, ¿es fácil localizar planetas como la Tierra?

Por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:

En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas  sobre el fondo iluminado por el resplandor de dicha estrella.

A pesar de todo, hemos conseguido encontrar…¿otras Tierras? que como Gliese 581 g, nos podrían dar alguna sorpresa. Pero sigamos…

En segundo lugar, del de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.

En una longitud de onda de unas pocas micras, la Tierra es el planeta más brillante del Sistema solar y destacaría como un objeto impactante si se utilaza cualquier telescopio de infrarrojos suficientemente sensible situado en nuestra proximidad estelar. El problema es que, dado que la radiación de infrarrojos es absorbida por los propios gases de la atmósfera terrestre, como el dióxido de carbono y el vapor de agua, que son lo que nos interesa , el telescopio que se utilice para buscar otros planetas como la Tierra tendrá que ser colocado en las profundidades del espacio, lejos de cualquier fuente potencial de contaminación. También tendrá que ser muy sensible, lo que significa muy grande. De ahí que estemos hablando de un proyecto internacional muy caro que tardará décadas en llevarse a buen puerto haciéndolo una realidad, y, mientras tanto, en la exploración espacial nos encontramos con extraños objetos y figuras como los de la imagen siguiente:

Anillos gigantes espaciales:  Los anillos parecen de joyas pero son de agujeros negros. Esta imagen conjunta de Arp 147, una pareja de galaxias interactuando localizada a unos 430 millones de años luz de la Tierra mostrada en rayos X desde el observatorio Chandra de la NASA (en rosa), y los ópticos del Telescopio Espacial Hubble (rojo, verde, azul). Lo ha producido el Instituto de Ciencias del Telescopio Espacial en Baltimore. Arp 147 contiene remanente de una galaxia espiral (derecha) que chocó con la galaxia elíptica (izquierda).

La explosión produjo una enorme onda expansiva de formación estelar que se muestra como un gran anillo azul que contiene abundancia de estrellas masivas jóvenes que, en pocos millones de años, explotarán en supernovas dejando atrás estrellas de neutrones y agujeros negros que, con su enormes masas, tirarán del material de las estrellas compañeras ahí presentes.

La sola presencia de gases como el dióxido de carbono y el vapor de agua no es suficiente como un signo de vida, pero sí de la existencia de planetas del de la Tierra en el sentido de que tendrían una atmósfera como Venus y Marte, mientras que, en particular, la presencia de agua indicaría la probabilidad de que existiera un lugar adecuado para la vida.

Hasta hoy, se han identificado más de 500 planetas extrasolares gigantes. A principios de abril del 2007 se detectó por primera vez vapor de agua en la atmósfera de un exoplaneta (HD209458b). También en abril del 2007, el VLT (Telescopio Muy Grande) en Chile detectó un planeta con un tamaño 5 veces el de la Tierra próximo a la estrella enana Gliese 581 -el que antes os mostraba-, donde se garantiza una temperatura de 0 y 40º Centígrados, ¡lo que permite la presencia de agua!. ¡Sólo está a 20,5 años luz!.

Un pequeño de exoplanetas han sido descubiertos con la ayuda del método de los tránsitos, que consiste en detectar la sombra de un planeta cuando en su órbita pasa por delante de su estrella y provoca un minieclipse. Medimos entonces la débil y pasajera ocultación de la estrella provocada por el paso del planeta.

Archivo:The Earth seen from Apollo 17.jpg

                                                                La Tierra vista el Apolo 17

La búsqueda de vida en los planetas extrasolares hacerse sólo por el análisis espectral de sus manifestaciones, singularidades en la atmósfera y/o un mensaje electromagnético “inteligente” de una civilización avanzada extraterrena. La atmósfera terrestre alberga un 21 % de oxígeno mientras que las atmósferas de otros planetas del sistema presentan sólo rastros. El oxígeno en la atmósfera terrestre es una singularidad por dos motivos: Es superabundante con relación a la corteza terrestre y debería normalmente desaparecer por recombinación con los minerales. Su presencia permanente está ligada a la existencia de vida intensa en la superficie de la tierra y no dejaría de llamar la atención a cualquier extraterrestre que observara la Tierra en busca de vida.

La presencia de grandes cantidades de oxígeno atmosférico se revelaría por la raya característica del oxígeno a 760 nm con la ayuda de un espectrofotometro en espectro visible del planeta. Por razones prácticas, es más fácil buscar la firma del ozono O3, en el espectro infrarrojo a 9,6 μm. En la hipótesis, extremadamente seductora, de que el oxígeno atmosférico extraterreno sería puesto en evidencia, los escépticos no dejarían de hacer ver que el oxígeno puede ser producido por mecanismos químicos no biológicos. Sea lo que sea, la presencia simultánea de ozono (oxígeno, al fin y al cabo), de vapor de agua y de dióxido de carbono aparece hoy como una firma convincente de una vida planetaria que explota ampliamente la fotosíntesis. Dos proyectos actuales de estudio, se refieren a la búsqueda de exoplanetas de terrestre. El proyecto americano TPF (Terrestrial Planet Finder, -buscador de planetas terrestres) y el proyecto europeo Darwin / IRSI (Infrared Space Interferometer,-Interferómetro espacial infrarrojo).

Este último consiste en colocar una flota de seis telescopios espaciales que serán acoplados en el espacio para analizar las atmósferas planetarias por interferometría y buscar allí las singularidades debidas una actividad biológica.

En realidad, cuando se estudian de detenida y pormenorizada los mecanismos del Universo, podemos ver la profunda sencillez sobre la que este se asienta. Los objetos más complejos del Universo conocido son los seres vivos, como, por ejemplo, nosotros mismos. Sin embargo, el origen de todo que comenzó en las estrellas, sigue su curso en las Nebulosas donde ya están presentes los materiales de la vida.

File:Rosette nebula Lanoue.png

           Se muestran  las emisiones del azufre (rojo oscuro), el hidrógeno el (verde), y el oxígeno (azul).

La Nebulosa Rosetta es difusa con un 1º de longitud situada en Monoceros, en torno a un cúmulo de estrellas de magnitud 5, NGC 2244. La Nebulosa se llama así porque se asemeja a un rosetón. Las partes más brillantes de la Nebulosa tienen sus propios números NGC: 2237, 2238, 2239 y 2246. El cúmulo de estrellas asociado, consistente en estrellas de magnitud 6 y más débiles, se extiende sobre aproximadamente un 1/2º. La Nebulosa y el cúmulo se encuentran a 5 500 a.l. Todas las Nebulosas pertenecen a una Galaxia en la que se hayan todos los sistemas complejos.

 Estos sistemas complejos están hechos de las materias primas más comunes que existen en Galaxias como la Vía Láctea o cualquier otra. En de aminoácidos estas materias primas se ensamblan de manera natural, dando lugar a sistemas autoorganizadores donde unas causas subyacentes muy sencillas pueden producir complejidad en la superficie, como en el caso del tigre y sus manchas. Finalmente, con el fin de detectar la presencia de esta complejidad máxima de unos sistemas universales no necesitamos ninguna prueba sofisticada para distinguir la materia viva de la materia “inerte”, si no únicamente las técnicas más sencillas (aunque asistidas por tecnologías altamente avanzadas) para identificar la presencia de uno de los compuestos más simples del universo: El oxígeno.

 

                                        Caos y Conplejidad que nos llevan directamente la vida

El caos y la complejidad se combinan para hacer del universo un lugar muy ordenado que es justo el entorno adecuado para formas vivas como nosotros mismos. Como dijo Stuart Kauffman, “en el universo estamos en nuestra propia casa”. Sin embargo, no es que el universo se haya diseñado así para beneficiarnos a nosotros, simplemente es que (según creo), la vida en el Universo es inevitable y la materia evolucionada en su más alto grado nos lleva a ella.

Planteémonos una simple pregunta: Dadas las que imperaban en la Tierra hace cuatro mil millones de años, ¿qué probabilidades había de que surgiera la vida?

No basta con responder que “la vida era inevitable, puesto que nosotros estamos aquí “. Obviamente, la vida sí se inició: nuestra existencia lo demuestra. ¿tenía que iniciarse? En otras palabras, ¿era inevitable que emergiera la vida a partir de un combinado químico y radiado por la energía interestelar y después de millones de años?

El Origen de la Vida.

 

En los trabajos que venimos dejando aquí, nos va quedando claro que las dudas, son más grandes que las certezas. Siempre el futuro mira al pasado pero… ¡No acaba de entender lo de nuestra presencia aquí!

Nadie conoce una respuesta exacta a esta pregunta del origen de la vida, según todos los indicios y con los que hoy contamos, parece ser un accidente químico con una alta probabilidad de reproducirse en otros lugares del Universo que sean poseedores de las condiciones especiales o parecidas a las que están presentes en nuestro planeta.

Pero la vida, no consiste solo en ADN, genes y replicación. Es cierto que, en un sentido biológico estricto, la vida está simplemente ocupada en replicar genes. Pero el ADN es inútil por sí sólo. Debe construir una célula, con todas sus sustancias químicas especializadas, para llevar a cabo realmente el proceso de replicación. En las denominadas formas de vida superior debe construir un organismo completo para que tenga todos los requisitos exigidos para que pueda replicarse. la perspectiva de un genoma, un organismo es una manera indirecta de copiar ADN.

Es probable que, como ocurre aquí en la Tierra, las formas de vida más abundantes en el espacio exterior, sean las Bacterias y demás dominios del mundo microscópico de la vida, y, más difícil será encontrar seres inteligentes como nosotros…sin descartar su existencia. Simplemente se trata de hacer unas sencillas cuentas. La vida en la Tierra está presente hace unos 4.000 millones de años pero, nosotros, sólo tenemos una antigüedad de unos escasos tres millones de años. La Evolución es lenta y se ha necesitado mucho tiempo para que podamos estar aquí, de la misma manera, ocurrirá en esos mundos perdidos por el espacio y, si están en sus fases primeras, la posible vida existente en ellos…será bacteriana.

El mar Precámbrico. El mar en el que posiblemente vivieron hace 3.500 millones de años las primeras bacterias era un lugar desértico en el que durante muchos millones de años sólo proliferaron arqueas y bacterias. Algunas de ellas dejaron rastros fósiles en de estromatolitos, unas formaciones en las que las bacterias provocaban la concreción de carbonatos y a la vez quedaban englobadas en ellos. Para comparar esta recreación de un mar de la época.

                                                                      El código genético de una célula viva.

Sería muy laborioso y complejo explicar aquí de manera completa todos y cada uno de los pasos necesarios y códigos que deben estar presentes formar cualquier clase de vida. Sin embargo, es necesario dejar constancia aquí de que los elementos necesarios para el surgir de la vida sólo se pueden fabricar en el núcleo de las estrellas (ya se mencionó antes) y en las explosiones de supernovas que pueblan el universo para formar nebulosas que son los semilleros de nuevas estrellas y planetas y también de la vida.

El surgir de la vida en nuestro Universo puede ser menos especial de lo que nosotros pensamos, y, en cualquier lugar o región del Cosmos pueden estar presentes formas de vida en que para nosotros podría ser como las del infierno.

 

     ¿Qué seres podrían vivir en un planeta que estuviera tan cerca de una Gigante Roja?

Hace varias décadas, los biólogos quedaron sorprendidos al bacterias que vivían confortablemente a temperaturas de setenta grados Celsius. Estos microbios peculiares se encontraban en pilas de abonos orgánicos, silos e inclusos en sistemas domésticos de agua caliente y fueron bautizados como termófilos.

Resultados de la búsqueda

 El término termófilo se aplica a organismos vivos que pueden soportar temperaturas imposibles y vivir en lugares de aguas calientes y sulfurosas, en terrenos de alto índice de salinidad o de Ph no apto seres vivos, así como en lugares y situaciones que, se podrían, sin lugar a ninguna duda, comparar con otros existentes en el espacio exterior, planetas y lunas sin atmósfera o de atmósfera reducida o demasiado densas.

Resultó que esto era sólo el principio. A finales de los años setenta la nave sumergible Alvin, perteneciente al Woods Hole Océano Graphic Institute, fue utilizada para explorar el fondo del mar a lo largo de la Grieta de las Galápagos en el océano Pacífico. Este accidente geológico, a unos dos kilómetros y medio bajo la superficie, tiene interés para los geólogos como un ejemplo primordial de las chimeneas volcánicas submarinas conocidas como “húmeros negros “. Cerca de un humero negro, el agua del mar alcanzar temperaturas tan altas como trescientos cincuenta grados Celsius, muy por encima del punto de ebullición normal. Esto es posible debido a la inmensa presión que hay en dicha profundidad.

                                              Fumarola negra descubierta en el Caribe

Lugares este permitieron la proliferación de pequeños seres vivos que, al calor de sus emisiones de gases tóxicos (de los que se alimentaban) salieron adelante y se expandieron de una manera bastante prolífica. Se cree que en lugares como este pudieron surgir algunos especímes que evolucionaron otros niveles.

Una expedición dirigida por científicos del Centro Nacional de Oceanografía en Southampton (Reino Unido) ha descubierto las chimeneas volcánicas submarinas más profundas del mundo, conocidas como ‘fumarolas negras’, de unos 5,000 metros de profundidad en la depresión de Cayman, en el Caribe, revela un artículo publicado en Sciencie.com

Los investigadores utilizaron un vehículo controlado por control remoto de inmersión profunda y descubrieron delgadas espirales de minerales de cobre y hierro en el manto marino, erupciones de agua lo suficientemente calientes derretir el plomo y unos 800 metros más profundas que las observadas con anterioridad.

Para asombro de los científicos implicados en el proyecto Alvin la región en torno a los húmeros negros de las Galápagos y otros lugares de las profundidades marinas resultó estar rebosante de vida. Entre los moradores más exóticos de las profundidades había cangrejos y gusanos tubulares gigantes. También había bacterias termófilas ya familiares en la periferia de los húmeros negros. Lo más notable de todo, sin embargo, eran algunos microbios hasta entonces desconocidos que vivían muy cerca de las aguas abrasadoras a temperaturas de hasta ciento diez grados Celsius. Ningún científico había imaginado nunca seriamente que una de vida pudiera soportar calor tan extremo.

Las lombrices tubulares gigantes, o como les llama la wikipedia gusanos de tubo gigantes son unas bonitas lombrices que viven en los fondos del Océano Pacífico y cuyo científico es Riftia Pachyptila, suena bien.

Estos interesantes invertebrados suelen vivir a una profundidad de 5000 pies (1500 metros), lo cual es una barbaridad. Su tamaño puede llegar hasta cerca de 3 metros, por eso las llaman gigantes. Imaginen ir a pescar con una lombriz de este tamaño…

¿Que comen estos bichos?

Esta es la más interesante. Las lombrices tubulares gigantes viven en auténticos hornos submarinos. Se situan justo en chimeneas submarinas por las que salen a temperaturas altísimas, gases y minerales de muy alta toxicidad para la mayoría de las especies. Digamos que viven encima de pequeños volcanes.

La comida favorita de estas lombrices es el azufre, no necesita oxígeno para nada. Se basta, en concreto, con el sulfuro de hidrógeno que sale de las chimeneas termales. Sale hirviendo así que las lombrices tienen que sorber con cuidado. Usan esas plumas rojas para captar el sulfuro. Las plumas, tienen ese color debido a la hemoglobina, esa sustancia que tambien nosotros tenemos en la sangre y nos ayuda a transportar el oxígeno. A ellas les ayuda a transportar azufre, lo cual nos mataría a nosotros enseguida.

El río Tinto es tan peculiar que sus aguas no son azules sino rojas y su ecosistema está tan muerto que la NASA lo ha estudiado para encontrar vida (en otros planetas). El río Tinto es tan singular que su contaminación no tiene parangón porque esas aguas tan rojas de ácidas que son fueron contaminadas por la propia naturaleza, con alguna ligera ayuda humana, eso sí, y se trata de una contaminación tan característica que está protegida como bien de interés cultural con categoría de sitio histórico. Contaminación protegida por ley. Con todo eso tenemos una paradoja explosiva: un río de aguas rojas contaminado por la Naturaleza y protegido legalmente precisamente por esa contaminación. Un paseo por sus riberas es similar a un paseo por el planeta Marte, un viaje a la desolación más desconcertante y el tren turístico que rememora los viajes mineros de finales del siglo XIX recorre algunos de los rincones menos accesibles para el paseante aprovechando locomotoras y vagones de la antigua compañía minera.

Igualmente se han encontrado formas de vida  en lugares de gélidas temperaturas y en las profundidades de la tierra. Así mismo, la NASA ha en un pueblo de Huelva (España) para estudiar aguas con un PH imposible para la vida y cargada de metales pesados que, sin embargo, estaba rebosante de vida. El proyecto de estos estudios se denomina P-TINTO, ya que, las aguas a las que nos referimos son precisamente las del Río Tinto, invadidas por los denominados extremófilos. Arrina podemos ver una imagen del rojo líquido donde viven, tan ricamente, algunas especies.

 tierra-primordial

Una recreación imaginaria de las de la Tierra primigenia al sergir la vida (Fuente: The Seven Sense)

Algunas de estas bacterias (Sulfolobus) obtienen la energía oxidando azufre, por lo que son bacterias quimiosintéticas. Extremófilos del termófilo producen algunos de los vistosos colores de la fuente termal Grand Prismatic Spring, en el Yellowstone National Park. ¿Por qué, viendo todo lo que vemos aquí mismo en nuestro planeta, nos podemos sorprender de que existan formas de vida en otros planetas?

Los extremófilos suelen ser procariotas como las bacterias, que son los seres con vida independiente más simples, pero también pueden ser eucariotas. De estos pequeños seres podríamos aprender muchísimas cosas que nos serían de gran valor para conocer, qué podríamos hacer en especiales circunstancias. La Naturaleza que tiene todas las respuestas nos la ofrece y, por nuestra , sólo podemos prestar atención.

Variedad increíble

Hay extremófilos para casi cualquier situación adversa del entorno: los acidófilosson aquellos que viven en entornos altamente ácidos, mientras que los alcalófilosson los que viven en lugares con un alto pH.

La anterior reseña viene a confirmarla enorme posibilidad de la existencia de vida en cualquier del universo que está regido por mecanismos iguales en cualquiera de sus regiones, por muchos años luz que nos separen de ellas. En comentarios anteriores dejamos claro que las Galaxias son lugares de autorregulación, y, podríamos considerarlos como organismos vivos que se regeneran así mismos de manera automática luchando contra la entropía del caos de donde vuelve a resurgir los materiales básicos para el nacimiento de nuevas estrellas y planetas donde surgirá alguna clase de vida.

http://www.ciberdroide.com/wordpress/wp-content/uploads/Rose_of_Jericho.gif

En el desierto de Chihuahua (el más extenso de América del Norte), La Selaginella lepidophylla es una planta que pertenece a la familia de las Selaginellaceae resiste a la sequía desecándose en un 95% para volverse a hidratar cuando las son propicias.

La idea de que la vida puede tener una historia se remonta a poco más de dos siglos. Anteriormente, se consideraba que las especies habían sido creadas de una vez para siempre. La vida no tenía más historia que el Universo. Sólo nosotros, los seres humanos, teníamos una historia. Todo lo demás, el Sol y las estrellas, continentes y océanos, plantas y animales, formaban la infraestructura inmutable creada para servir fondo y soporte de la aventura humana. Los fósiles fueron los primeros en sugerir que idea podía estar equivocada.

Durante cerca de tres mil millones de años, la vida habría sido visible sólo a través de sus efectos en el ambiente y, a veces , por la presencia de colonias, tales como los extremófilos que asociaban billones de individuos microscópicos en formaciones que podrían haber pasado por rocas si no fuera por su superficie pegajosa y por sus colores cambiantes.

El arbol de la vida formada por tres dominios: Bacteria : pertenecen las cianobacterias, bacterias aerobias,  Archae:  carecen de núcleo celular son PROCARIOTAS, y  Eukarya: tiene nucleo definido (EUCARIOTAS) a el pertenecen los hongos, plantas y animales.

Toda la panoplia de plantas, hongos y animales que en la actualidad cubre el globo terrestre con su esplendor no existía. Sólo había organismos unicelulares, que empezaron con casi toda seguridad con bacterias. Esa palabra, “bacteria”, para la mayoría de nosotros evoca espectros de peste, enfermedades, difteria y tuberculosis, además de todos los azotes del pasado hasta que llegó Pasteur. Sin embargo, las bacterias patógenas son sólo una pequeña minoría, el resto, colabora con nosotros en llevar la vida delante, y, de hecho, sin ellas, no podríamos vivir. Ellas, reciclan el mundo de las plantas y animales muertos y aseguran que se renueve el carbono, el nitrógeno y otros elementos bioquímicos.

Por todas estas razones, podemos esperar que, en mundos que creemos muertos y carentes de vida, ellas (las bacterias) estén allí. Están relacionadas con las primeras formas de vida, las bacterias han estado ahí hace cerca de 4.000 millones de años, y, durante gran parte de ese tiempo, no fueron acompañadas por ninguna otra forma de vida.

                                   ¡La Vida! Tendrá tántas maneras de expresarse…, que ni podemos imaginar

Pero, ¿No estamos hablando del Universo?  ¡Claro que sí! Hablamos del Universo y, ahora, de la más evolucionada que en él existe: Los seres pensantes y conscientes de SER, nosotros los humanos que, de momento, somos los únicos seres inteligentes conocidos del Inmenso Universo. Sin embargo, pensar que estamos solos, sería un terrible y lamentable error que, seguramente, nos traería consecuencias de difícil solución.

Tenemos que pensar seriamente en la posibilidad de la vida extraterrestre que, incluso en nuestra propia Galaxia, podría ser muy abundante. Es cierto que no será fácil -por el momento- encontrarla y mucho menos poder contactar con aquella que sea inteligente, no tenemos los medios para ello. Sin embargo, ese tantas veces imaginado , pòdría producirse por parte de “ellos” y, tal posibilidad, nos produce temor.

Necesitamos tiempo para poder avanzar en el conocimiento que nos lleve, a conseguir otras formas de “” hacia los mundos lejanos en los que, de seguro, encontraremos muchas de las cosas que imaginamos y que allí, serán realidad. Se necesitan nuevas formas de energías, nuevas maneras de entender la física, nuevas tecnologías más avanzadas que trasciendan hacia niveles más profundos y nos puedan llevar, realmente, al Espacio, visitar físicamente esos lugares tántas veces soñados y que, por lo que sabemos, están ahí, esperando nuestra visita.

Nuestra imaginación que es, casi tan grande como el Universo mismo,podrá lograr muchos de esos sueños que a través de los tiempos nuestras mentes crearon y que, a medida que nuestros conocimientos evolucionan, se acercan más y más a la posibilidad de hacerlos una realidad. En todo el Universo siempre es lo mismo, rigen las mismas leyes, las mismas fuerzas que tantas veces hemos explicado aquí, e, igualmente, en todas partes está presente la misma materia que lo conforma todo…¡ el más sencillo átomo de hidrógeno, hasta la Vida misma!

      ¡Quarks y Leptones! que forman los átomos y la materia que, junto a las fuerzas fundamentales conforman todo el universo. Todo es mucho más de lo que nuestras mentes puedan imaginar. Son muchas las preguntas que están pendientes de contestar y, aunque no dejamos de avanzar, lo cierto es que nos queda mucho que aprender y muchos secretos por desvelar. Lo que se dice saber, saber… ¡No sabemos! Son muchos los secretos de la Naturaleza que perduran y, mientras tanto nosotros no sepamos sobre algunos de ellos… Por ejemplo, ¿Qué es la luz? tendremos que seguir ese camino hace miles de emprendido en busca de las respuestas.

Al final todo consiste en

Nucleones
Núcleos
Átomos
Moléculas
Sustancias
Cuerpos
Planetas (Vida)
Estrellas
Galaxias
Cúmulos de galaxias

Claro que, también están los Pensamientos y los Sentimientos.

emilio silvera

El microbio depredador que aclara nuestro origen

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Una ameba que forma grupos pluricelulares puede ser el ancestro de todos los animales, incluidos los humanos, según un estudio

Ameba de la especie 'Capsaspora owczarzaki'.
Ameba de la especie ‘Capsaspora owczarzaki’.

Un enigmático microbio descubierto en las tripas de un caracol acaba de iluminar una de las etapas más oscuras y apasionantes de la historia de la vida en la Tierra: cómo los seres unicelulares comenzaron a juntarse y dieron lugar a la orgiástica variedad de formas de vida que abarca a todos los animales, incluidos los humanos.

En algún momento de la evolución, un solitario microbio se unió a otro solitario microbio. Descubrieron las ventajas de la cooperación y comenzaron a explotarla. Es posible que los primeros enlaces fuesen temporales, pero lo importante es que la naturaleza comenzó un proceso de prueba y error inexorable que, millones de años después, hace posible que usted tenga todos esos tejidos especializados que le permiten respirar, captar la luz de la pantalla, comprender las letras escritas en este artículo y, posiblemente, seguir leyendo esta historia.

“Estamos hablando de una de las transiciones más importantes de la historia de la vida y la única manera que tenemos de comprender ese momento es estudiar a sus primos hermanos unicelulares”, explica a Materia Iñaki Ruiz-Trillo, investigador del Instituto de Biología Evolutiva de Barcelona (CSIC-UPF).

A principios de la década pasada, un equipo de científicos estaba analizando en Puerto Rico parásitos de la esquistosomiasis, una enfermedad olvidada que azota a más de 250 millones de personas en países en desarrollo. En la hemolinfa de un caracol encontraron esos parásitos y también un simbionte desconocido hasta ese momento. Se trataba de una ameba a la que bautizaron como Capsaspora owczarzaki. Los descubridores publicaron el código de barras genético de este nuevo ser vivo en una revista científica, almacenaron unas cuantas amebas en un banco de cultivos celulares vivos en EE UU y ahí quedó todo.

 

 

       Las amebas, formando un agregado pluricelular I R-T

Dos años después, Ruiz-Trillo se topó con la descripción de la capsaspora y decidió estudiarla en detalle. Al secuenciar su genoma descubrió que, a pesar de ser un ser unicelular, esta ameba tiene varios genes que se creían exclusivos de los animales. Esos genes regulan la diferenciación celular, la comunicación entre células y la adhesión entre ellas, tres procesos fundamentales para la formación de organismos pluricelulares y que en los animales son necesarios para desarrollar todos los tejidos diferenciados del cuerpo.

Vistas al microscopio, las capsasporas muestran filopodios, patas con las que pueden moverse de un sitio a otro. El ciclo de la vida de estos microbios tiene tres estados. En el primero viven solos, moviéndose de aquí para allá con sus patas. En otro estado pierden esas extremidades y entran en una especie de hibernación si falta el alimento. En el tercero, el más interesante, varias capsaspora entrelazan sus extremidades y forman una especie de ser pluricelular primitivo.

 

Estamos hablando de una de las transiciones más importantes de la historia de la vida

“Pensamos que se juntan en momentos de estrés, cuando falta alimento, y esto es algo que las mantiene vivas en una situación difícil”, explica Ruiz-Trillo. ¿Pudo ser así como surgieron los primeros ancestros de todos los animales?

En un estudio que se publica hoy en la edición impresa de Cell, el equipo de Ruiz-Trillo muestra que la capsaspora comparte con los animales varios mecanismos de regulación genética, los interruptores que se encargan de encender y apagar genes para el correcto desarrollo de un individuo. “Los elementos de regulación genómica que en los animales controlan el tipo de tejido que serán unas células y no otras los encontramos en las carpospora y precisamente les sirven para regular en qué punto de su ciclo vital están”, detalla.

El trabajo incide también sobre dos genes fundamentales y compartidos entre estas amebas y los animales. El primero es un factor de transcripción llamado Brachyury. En los animales permite que las células de un embrión se muevan para empezar a formar los diferentes órganos. Las capsaspora también lo tienen y lo emplean para moverse, destaca Ruiz-Trillo. El otro gen es Myc. En la ameba es clave para la proliferación celular. En los animales, cuando está mutado, provoca el crecimiento celular descontrolado que llamamos cáncer y que puede ser entendido como un ser vivo creciendo dentro de otro hasta matarlo. “Hasta ahora se pensaba que este gen era exclusivamente animal, pero ahora vemos que estos bichos ya lo tenían mucho antes”, enfatiza Ruiz-Trillo.

La multicelularidad es un invento tan eficiente que probablemente ha habido decenas de seres vivos que la han desarrollado de forma independiente en la historia de la evolución. No se sabe cuál de ellos fue el ancestro de todos los animales, pero la capsaspora es una de las posibilidades. “Los primeros animales surgieron hace unos 600 millones de años y probablemente las capsaspora ya existían hace unos 700 millones de años, con lo que podrían ser sus primeros ancestros”, explica Ruiz-Trillo.

Una última característica de estos microbios da que pensar. En todo el planeta solo se conocen dos especies de estas amebas. Una es la que encontraron en las tripas del caracol puertorriqueño. La otra vive libre en el mar. En ese ambiente las capsasporas son depredadores que sobreviven cazando otras amebas y alimentándose de ellas. ¿Les suena?