sábado, 16 de enero del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuevos Materiales, nuevos procesos, nuevos dispositivos. II

Autor por Emilio Silvera    ~    Archivo Clasificado en Nuevos materiales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

Una investigación ha desarrollado una nueva estructura cuántica capaz de emitir fotones individuales de color rojo. El avance, que se publica en la revista Nature Materials, se basa en el confinamiento cuántico que se genera en cada uno de los puntos y que les permite modular la energía de la luz que emiten.

En este trabajo han participado investigadores de la Universidad de Zaragoza, el Institut de Recerca en Energia de Catalunya (IREC), la Universidad de Barcelona y del Instituto de Ciencia de Materiales de Barcelona del CSIC. El investigador Jordi Arbiol de este último explica:

“El resultado final son hilos unidimensionales, de tamaño nanométrico, compatibles con la tecnología electrónica actual, que permitirían crear dispositivos a mayor escala con un control total de la emisión de luz, fotón a fotón”.

Pero centrémonos en el trabajo que aquí se prenta hoy y que comienza hablando de los…

nanohilos cuánticos

Nanohilos

No sólo las moléculas, los Nanotubos o el grafeno son las apuestas para sustituir al silicio. Otros elementos como los Nanohilos fabricados a partir de materiales semiconductores o los Nanohilos metálicos tendrán también cierto protagonismo. En concreto, los Nanohilos semiconductores presentan un gran potencial como transistores pero también presentan aplicaciones en campos como octoelectrónica o en la fabricación de censores biológicos. Por otro lado los Nanohilos metálicos, cuya síntesis controlada es más difícil, poseen gran interés como interconectores. En el caso de los Nanohilos formados de materiales Ni, Co o Fe se puede aprovechar también su potencial comportamiento magnetorresisitivo para ser usados en dispositivos de almacenamiento magnético. Los Nanohilos metálicos son interesantes a su vez porque los efectos de tamaño inducen en ellos la aparición de transiciones de fase martensíticas y la aparición de configuraciones no cristalinas.” Veamos que pasa con las Nanopartículas.

Nanopartículas

Quizás, junto a los nanotubos de carbono, las nanopartículas representan los materiales que tienen una repercución tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas representan los materiales que tienen una repercusión tecnológica más inmediata. Además de sus propiedades intrínsecas, las nanopartículas, debido a su pequeño tamaño, pueden convertirse en diminutos dispositivos capaces de  realizar otras funciones, como transportar un medicamento específico por el torrente sanguíneo sin obstruirlo. Para lograr esto, las nanopartículas deben ser el soporte de capas de moléculas autoensambladas que confieren una funcionalidad adicional a las mismas.

Como su propio nombre indica, el término “nanopartícula” designa una agrupación de átomos o moléculas que dan lugar a una partícula con dimensiones nanométricas. Es decir, que su tamaño está comprendido entre 1 y 100 nm. Dependiendo de cuáles sean los átomos o moléculas que se agrupan se originarán diferentes tipos de nanopartículas. Así, por ejemplo, tendremos nanopartículas de oro, de plata o nanopartículas magnéticas si están formadas por átomos de Fe o Co. Su pequeño tamaño hace que la relación superficie/volumen crezca y por tanto que estas estructuras tengan unas propiedades características y esencialmente distintas a las que presenta el material en volumen.

Una estrategia para la formación de nanopartículas es recubrirlas con distintas capas de manera tal que cada una aporte funcionalidades diferentes al sistema. Así, por ejemplo, recientemente se han descrito nanopartículas cuyo interior está formado por un material magnético, como el Co, seguido de una capa intermedia de SiO2 que aporta estabilidad al sistema y finalmente una superficie de oro.

El tamaño final de la nanopartícula es de 3 nm, y esta estructura laminar hace que tengan un núcleo magnético que posibilite su guiado, y una superficie de oro que facilite  el autoensamblado de moléculas orgánicas o biológicas para diferentes  aplicaciones. Entre éstas destaca su uso como biosensores. Para ello se inmoviliza material biológico, como ácido desoxirribonucleico (ADN) o el llamado ácido nucléico péptidico (PNA, del inglés peptide nucleic acid), que siendo un ácido nucléico artificial, presenta un “esqueleto” molecular formado por enlaces peptidicos y una estructura de bases nucleicas exactamente igual a la del ADN. El PNA puede reconocer cadenas complementarias de ADN, incluso con mayor eficiencia para la hibridación que la que representa el ADN para reconocer su hebra complementaria. Por este motivo, el PNA se ha propuesto como sonda para la fabricación de biosensores altamente eficientes. Estas macromoléculas unidas a superficies o nanopartículas son capaces de detectar diferentes analítos de interés, particularmente otars moléculas biológicas.

Sin embargo, el concepto de nanopartícula debe concebirse en un sentido más amplio ya que no sólo puede estar basada en un núcleo inorgánico, pudiéndose sintetizar nanopartículas poliméricas. Yendo un poco más allá una cápsida vírica puede entenderse como una nanopartícula formada por una carcasa proteica. Esta cápsida vírica tiene dimensiones  nanométricas y, en muchos casos, burla con facilidad las membranas celulares. Por esta razón este tipo de “nanopartículas” se proponen para su uso en nanomedicina, y son el objeto de estudios básicos  en los que las herramientas como los microscopios de fuerzas atómicas juegan un papel esencial. En particular, estas herramientas nos permiten caracterizar las propiedades mecánicas y las condiciones de ruptura de cápsidas víricas así como la forma en la que dichas cápsidas se comportan ante, por ejemplo, cambios controlados de humedad.

En un discurso recientemente impartido en la Universidad Europea de Madrid, William F. Clinton, ex-Presidente de los EE.UU, afirmó que ” el cometido del siglo XXI será salvar al mundo del cambio climático, regenerar la economía y crear empleo. El futuro más allá será la Nanotecnología y la biotecnología”. El propio W.F. Clinton fue el impulsor de la Iniciativa Nacional de Nanotecnología durante su mandato, convirtiendo durante los últimos 10 años a EE.UU en el líder mundial en la generación de conocimientos básicos y aplicados en el ámbito de la Nanotecnología.

Nadie pone en duda las afirmaciones de W.F. Clinton sobre el papel de la Nanotecnología en nuestro futuro a medio y largo plazo, por lo uqe es imperativo estar suficientemente preparados para construir este nuevo paradigma científico. En el caso concreto de España, las dos últimas ediciones del Plan Nacional de I+D+I han encumbrado las investigaciones en Nanociencia y Nanotecnología a la categoría de Acción Estratégica. En la actualidad se están poniendo en marcha varios centros dedicados a Nanotecnología. Dichas iniciativas son producto, por lo general, de costosos impulsos puntuales, locales, dirigidos por científicos con iniciativa, pero no son fruto de una actuación de conjunto, planificada siguiendo una estrategia  quiada por unos objetivos ambiciosos, en los que impere la coordinación y el uso eficiente de los recursos. La actual coyuntura económica no invita al optimismo a este respecto, por lo que sería necesario poner en marcha iniciativas que promuevan la adquisición de infraestructuras, la formación de técnicos, la coordinación entre centros emergentes, etc.

Otro punto sobre el que no hay que descuidarse tiene que ver con la formación, en todos los niveles educativos, en Nanotecnología. En este sentido son numerosas las universidades españolas que ofrecen cursos de master y/o doctorado con contenidos relacionados con la Nanotecnología. Sin embargo, muchos de estos cursos tienen pocos estudiantes inscritos, al igual que ocurre con muchos estudios de grado relacionados con las ciencias básicas. La tarea de fascinar y atraer a nuestros jóvenes hacia la ciencia debe comenzar mucho antes. En este sentido, los conceptos inherentes a la Nanotecnología deben formar parte del conocimiento que debe llegar a los estudiantes de educación secundaria, como ocurre en países como Alemania, Finlandia, Taiwán, Japón, EE.UU., etc. Además, la Nanotecnología es una materia que causa cierta fascinación a los adolescentes por lo que puede ser un buen punto de partida para incentivar las vocaciones científicas. Esta ha sido una de las principales razones por las que los autores de este artículo junto con otros investigadores (Carlos Briones del Centro de Astrobiología y Elena Casero de la Universidad Autónoma de Madrid) accedieron a la petición de la Fundación Española de Ciencia y Tecnología (FECyT) para escribir una Unidad Didáctica de Ciencia y Tecnología. Dicho libro ya se encuentra en todos los institutos españoles de educación secundaria y bachillerato, y se puede descargar desde la web de la FECyT. Esperemos que esta pequeña contribución, junto con otras de mayor calado que deben promoverse desde las diversas administraciones públicas, permita tomar la senda que nos lleve a medio plazo hacia la tan ansiada sociedad basada en el conocimiento.

Imagen de la Página Inicial de la Revista

Fuente: Revista Española de Física. Volumen 23 Nº 4 de 2009

Los Autores:

D. José Ángel Martín Gago, del Instituto de Ciencia de Materiales de Madrid, Concejo Superior de Investigaciones científicas, Centro de Astrobiología /CSIC/INTA), Instituto Nacional de Técnica Aerpespacial, y, D. Pedro A. Serena Domingo, del Instituo de Ciencia y Materiales de Madrid y del Consejo Superior de Investigaciones Científicas.

La verdadera Historia de la Teoría del Caos

Autor por Emilio Silvera    ~    Archivo Clasificado en Caos y Complejidad    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Entradas anteriores

 

“Es la peor noticia posible para aquellos que esperan avances importantes en la cumbre climática que se celebró  en Copenhague. Uno de los científicos más destacados de la teoría del cambio climático, Phil Jones, se veía obligado a presentar su dimisión temporal como director de la Unidad de Investigación Climática de la Universidad de East Anglia, en Norwich, Inglaterra, tras ser acusado de manipular datos sobre los efectos del cambio climático para exagerar su impacto.”

¿Qué iría biuscando con tal comportamiento? Cuando se hacen cosas así, dichos comportamientos están aconsejados por intereses particulares que no siempre se pueden confesar. No está bien manipular datos para que el gran público tenga una idea iquivocada de la verdadera situación de las cosas.

¿Os acordáis de aquella vez que Mark Twain tuvo que decir:

“Las noticias sobre mi muerte han sido exageradas”.

Bueno, pues hasta ahí llegan para vender

Los Medios de Comunicación, no siempre son fieles “comunicadores” y, para realzar las noticias, las expresan con un grado extra de exaltación, o, licencia poética que, distorsiona la realidad de lo que realmente deberían comunicar, y, no pocas veces, tal hecho se debe a que (sobre todo en noticias relativas a cuestiones científicas) no se elige a la persona debidamente preparada y adecuada a la noticia que se quiere ofrecer al público. Si la noticia se ha dado de manera equívoca, el científico redactor debe enmendar lo que se dijo con miras a llamar la atención o conseguir alguna subvención.

 

cura_sida

 

“Desde la década de los 80 el Síndrome de Inmunodeficiencia Humana (SIDA) se ha considerado una de las peores enfermedades de nuestra época, para la que, según se creía hasta hace poco, parecía no existir cura.

Desde hace bien poco tiempo, sin embargo, se han dado a conocer ciertos hallazgos que podrían acabar por fin con este mal. Primero fue el caso de un niño en Estados Unidos a quien por el tratamiento médico recibido fue posible erradicar todo rastro posiblemente peligroso de VIH con el que había nacido. Después el Instituto Pasteur de París anunció que 14 adultos habían logrado controlar la acción del virus.”

Así, de manera comedida y reflejando la realidad es como deben darse siempre las noticias sin levantar espectativas falsas en uno u otro sentido.

                    Betelgeuse que es una supergigante roja, sólo tiene 20 veces la masa del Sol

Escribo esto a partir de un artículo leído en la prensa diaria que, tratando de hablar de exóticos objetos que existen en el Universo, llegan a hablarnos de estrellas masivas con 600 veces la masa del Sol, y, tal barbaridad, nos lleva a pensar que, para hacer un reportaje o comentario de estos temas, los diferentes medios, deberían acudir a personas versadas en lo que están tratando, y, de esa manera, además de quedar mucho mejor, evitarían el ridículo de publicar las cosas alejadas de la realidad. La masa máxima que se considera para una estrella viene a ser de 120 masas solares, ya que, cuando su masa es mayor, la propia radiación la destruye. Pueden existir algunas estrellas que sobrepasen ese límite de las 120 masas solares pero, están continuamente eyectando material al espacio para descongestionarse y no explotar.

Eta Carinae es una estrella que posiblemente pueda tener más de 120 masas solares pero, como podéis contemplar en la imagen, está envuelta en una Nebulosa que ella misma ha generado al estar, continuamente eyectando material al espacio y evitar así su propia muerte.

Buscando en mi documentación, un buen ejemplo de lo que digo, por suerte, me encuentro con un artículo escrito por Don Carlos Miguel Madrid Casado del Departamento de Lógica y Filosofía de la Ciencia en la Facultad de Filosofía de la Universidad Complutense de Madrid, dónde nos deja un claro ejemplo de lo que no debiera ser. Aquí os lo dejo.

“Edward Lorenz (1917-2008): ¿Padre de la Teoría del Caos?

El miércoles de 16 de abril de 2008, a los 90 años de edad, moría Edward Norton Lorenz. Los periódicos de medio mundo pronto se hicieron eco de la noticia. Todos los obituarios recogieron que había muerto “el Padre de la Teoría del Caos”. Lorenz, escribían, fue el primero en reconocer el comportamiento caótico de ciertos sistemas dinámicos, como el atmosférico. El estudio de este comportamiento altamente inestable y errático le condujo, continuaban, a formular una de las principales características de lo que hoy se llama “caos determinista”: la dependencia sensible a las condiciones iniciales, popularmente conocida como “efecto mariposa”. Lorenz, concluían, fue el artífice de la tercera revolución científica del siglo XX, después de la Teoría de la Relatividad y la Mecánica Cuántica.

Una de la mayores carácterísticas de un Sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta e impredecible.

Las condiciones iniciales de un sistema implican que las condiciones finales sean tal como, de manera inevitable serán. Es decir, su condición inicial nos dice cuál será su condición final. Desde su nacimiento nos está diciendo como será su “muerte”.

De todo  sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distint

Pero, veamos,  ¿ha sido realmente Edward Lorenz el “creador” de la Teoría del Caos? ¿O acaso su papel de estrella protagonista se debe más bien a una inusitada alianza entre mérito y fortuna? El propósito de esta nota es ofrecer una panorámica de la Historia de la Teoría del Caos que complique su nacimiento y enriquezca su evolución, sacando a la luz la figura de ciertos científicos que el gran talento de Lorenz ha ensombrecido y ocultado.Comenzamos nuestra panorámica retrocediendo hasta los tiempos de la Revolución Científica. El intento por comprender las trayectorias planetarias observadas por Kepler condujo a Newton a modelarlas matemáticamente, siguiendo la estela de Galileo. Newton formuló sus leyes de una forma matemática que relacionaba entre sí las magnitudes físicas y sus ritmos de cambio. Las leyes físicas quedaron expresadas como ecuaciones diferenciales. Estudiar un fenómeno físico y hallar las ecuaciones diferenciales que las gobernaban eran las dos caras de la misma moneda.

Desde el siglo XVII, toda la naturaleza –sólidos, fluidos, sonido, calor, luz, electricidad- fue modelada mediante ecuaciones diferenciales. Ahora bien, una cosa era dar con las ecuaciones del fenómeno en cuestión y otra, bien distinta, resolverlas. La teoría de las ecuaciones diferenciales lineales fue desarrollada por completo en poco tiempo. No así la teoría gemela, la teoría de las ecuaciones diferenciales no lineales.

Uno de los problemas no lineales que trajo de cabeza a físicos y matemáticos fue el problema de los n cuerpos de la Mecánica Celeste: dados n cuerpos de distintas masas bajo atracción gravitacional mutua, se trataba de determinar el movimiento de cada uno de ellos en el espacio. Newton resolvió geométricamente el problema de los dos cuerpos en los Principia. Posteriormente, Bernoulli y Euler lo resolvieron analíticamente con todo detalle. Sin embargo, no ocurrió así con el problema de los tres cuerpos. Newton sabia que, cuando un tercer cuerpo entraba en escena, el problema no era fácilmente resoluble, y que esto traía serias consecuencias para la cuestión de la estabilidad del Sistema Solar (que, a fin de cuentas, en la época, pasaba por ser un sistema de siete cuerpos). Aunque débiles en comparación con la fuerza de atracción del Sol, las fuerzas gravitatorias entre los planetas no eran ni mucho menos despreciables, por cuanto a la larga podían desviar algún planeta de su órbita e incluso, en el límite, expulsarlo fuera del Sistema Solar.

leonhard euler 2

El matemático suizo Leonhard Euler

Las fuerzas interplanetarias podían estropear las bellas elipses keplerianas, sin que fuera posible predecir el comportamiento del Sistema Solar en un futuro lejano. En Motu corporum in gyrum, Newton afirmaba que los planetas no se mueven exactamente en elipses ni recorren dos veces la misma órbita, y reconocía que definir estos movimientos para todo futuro excedía con mucho la fuerza entera del intelecto humano. Si el Sistema Solar se iba desajustando, era necesaria una solución drástica: la Mano de Dios tenía que reconducir cada planeta a su elipse, reestableciendo la armonía. Este Deus ex machina newtoniano provocó, como es bien sabido, la ira de Leibniz, para quien Dios no podía ser un relojero tan torpe.

Tiempo después, Laplace creyó explicar las anomalías orbitales que preocuparon a Newton como meras perturbaciones que sólo dependían de la Ley de Gravitación y tendían a compensarse en el transcurso del tiempo. Así, al presentar su Mecánica Celeste a Napoleón, exclamó que Dios no era una hipótesis necesaria en su sistema del mundo. Sin embargo, en sus ecuaciones del sistema Sol-Júpiter-Saturno (problema de los tres cuerpos), Laplace despreció un término matemático que creía muy pequeño pero que, en contra de lo por él supuesto, podía crecer rápidamente y sin límite, hasta desestabilizar el Sistema Solar.

Muchos físicos y matemáticos decimonónicos dedicaron sus esfuerzos a dar una respuesta completa al problema de los tres cuerpos y a la cuestión de la estabilidad del Sistema Solar. Entre ellos, uno de los personajes clave en la configuración de la Teoría del Caos: Henri Poincaré.

poincare Henri Poincaré. El trabajo científico.

                                     Henri Poincaré

En 1855, los matemáticos europeos tuvieron noticia de que un importante concurso internacional iba a ser convocado bajo el auspicio de Oscar II, rey de Suecia y Noruega, para celebrar su sesenta aniversario en el trono. Se ofrecía un sustancioso premio al matemático capaz de resolver el problema de los tres cuerpos y, de este modo, avanzar en el estudio de la estabilidad del Sistema Solar. Alentado por la competencia, Poincaré procedió a sintetizar muchas de sus ideas acerca del estudio cualitativo o topológico de las ecuaciones diferenciales no lineales. El Jurado declaró ganador a Poincaré por una compleja resolución del problema restringido de los tres cuerpos, en que un planeta ligero se mueve bajo la atracción gravitatoria de dos estrellas iguales que giran una alrededor de la otra describiendo dos elipses confinadas en un mismo plano. Sin embargo, el artículo de Poincaré contenía un error y una tirada completa de la prestigiosa revista Acta Mathemática hubo de ser destruida.

A toda prisa, Poincaré revisó su trabajo y descubrió que, en verdad, no podía probarse la estabilidad del sistema, porque su dinámica no seguía pauta regular alguna. Su revisión del problema contiene una de las primeras descripciones del comportamiento caótico en un sistema dinámico. Poincaré fue, desde luego, el abuelo de la Teoría del Caos. Además, a partir de entonces, Poincaré contribuyó como pocos, a popularizar la idea de que existen sistemas deterministas cuya predicción a largo plazo resulta imposible. En Ciencia y Método, escribía: “Puede suceder que pequeñas diferencias en las condiciones iniciales produzcan algunas muy grandes en los estados finales. Un pequeño error al inicio engendrará un enorme error al final. La predicción se vuelve imposible”.

   Otros también trataron el tema y profundizaron en los secretos de la Naturaleza

¡Caramba! Medio siglo antes que Lorenz, Poincaré se había topado con… ¡el efecto mariposa! Aún más: el genial matemático francés señaló que el tiempo meteorológico hacía gala de esta clase de inestabilidad y apuntó qué dificultades se derivarían para la predicción meteorológica. En su labor divulgadora no estuvo solo: su compatriota Pierre Duhem difundió las investigaciones de Poincaré y, también, de Jacques Hadamard, quien fue pionero en demostrar matemáticamente que, para cierto sistema dinámico hoy conocido como el Billar de Hadamard, un pequeño cambio en las condiciones iniciales provoca un notable cambio en la posterior evolución del sistema.

Durante el primer cuarto del siglo XX, la influencia de Poincaré no desapareció y se dejó notar en los trabajos de George David Birkhoff a propósito de las características cualitativas y topológicas de los sistemas dinámicos. Tampoco puede olvidarse el papel de Stephen Smale, que ganaría la Medalla Fields –el Premio Nobel de los matemáticos- en 1966 por sus contribuciones a la Teoría de los Sistemas Dinámicos. Mediado el siglo XX, este topólogo continuó la senda trazada por Poincaré t Birkhoff, y descubrió la Herradura de Smale, que pasa por ser el mecanismo topológico que da lugar al caos (efecto mezcla).

Imagen

                 George David Birkhoff

Simultáneamente, cruzando el telón de acero, existía otra fértil tradición: la Escuela Rusa. En la U. R. S. S., los físicos y matemáticos habían heredado de Alexander Liapunov sus influyentes nociones acerca de la estabilidad del movimiento de los sistemas dinámicos. Si Poincaré se había ocupado de la teoría de la estabilidad desde una perspectiva cualitativa, Liapunov lo hizo cuantitativamente (exponentes de Liapunov). Recogiendo el testigo de ambos, Kolmogorov y Arnold se concentraron en el estudio de la estabilidad de los sistemas dinámicos de la Dinámica Celeste. Durante la guerra fría, los principales resultados de los matemáticos soviéticos fueron traducidos al inglés y dados a conocer al resto de matemáticos, europeos y norteamericanos, gracias al providencial trabajo de Solomon  Lefschetz.

Y en éstas, apareció Lorenz… En 1963, este matemático y meteorólogo, antiguo alumno de Birkhoff en Harvard, estaba trabajando en el pronóstico del tiempo en el MIT. Estudiando la convección en la atmósfera, Lorenz planteó un modelo matemático formado por tres ecuaciones diferenciales ordinarias para describir el movimiento de un fluido bajo la acción de un gradiente térmico. Mientras buscaba soluciones numéricas con la ayuda de una computadora, se encontró –al volver de tomar una taza de café- con que se producía un dramático comportamiento inestable, caótico. Lorenz se había topado por casualidad con el fenómeno de la sensibilidad a las condiciones iniciales, que hacía de su sistema algo en la práctica impredecible. En efecto, tras establecer las propiedades básicas del flujo, Lorenz reparó en que una pequeña variación en las condiciones iniciales ocasionaba estados finales completamente diferentes. Lorenz había descubierto, tomando prestada la indeleble metáfora que forjaría más tarde, el efecto mariposa: el aleteo de una mariposa en Brasil puede ocasionar un tornado en Texas. Ahora bien, sería el matemático norteamericano Guckenheimer el que, allá por los años 70, acuñara la expresión “dependencia sensible a las condiciones iniciales”.

Lorenz publicó su hallazgo en una revista de meteorología, en un artículo titulado Deterministic Nonperiodic Flow, en que citaba expresamente a Poincaré y Birkhoff (aunque desconocía las ideas del primero sobre predicciones meteorológicas), pero que pasó prácticamente desapercibido. Sólo Stephen Smale y James Jorke –el introductor del término caos en la literatura científica- reconocieron las repercusiones filosóficas de la investigación de Lorenz y la dieron a conocer. Si Edward Lorenz ofreció a la comunidad científica el paradigma de sistema dinámico caótico continuo, el zoólogo Robert May dio a conocer en su artículo Simple Mathematical Models with Complicated Dynamics el paradigma del sistema dinámico caótico discreto: la aplicación logística.

A finales de los 70 y principios de los 80, la exploración de aplicaciones de la Teoría del Caos comenzó a dar sus frutos más allá de las simulaciones en las pantallas de ordenador. Entre los fenómenos físicos estudiados destaca, sin duda, la transición a la turbulencia en los fluidos, cuyo estudio contaba con el precedente que suponía el artículo On the nature of turbulence de David Ruelle y Floris Takens, quiénes introdujeron la noción de atractor extraño. Paralelamente, el físico Mitchell Feigenbaum descubrió heurísticamente ciertas constantes universales que caracterizan la transición del movimiento periódico al movimiento caótico, dando inicio a una de las ramas más prometedoras de la Teoría del Caos a día de hoy: la Teoría de la Bifurcación.

En resumidas cuentas, a comienzos del siglo XXI, la Teoría del Caos se nos aparece como la ciencia fisicomatemática que estudia el comportamiento aperiódico e inestable en sistemas deterministas no lineales. Mientras que la revolución relativista fue, prácticamente, fruto de un único hombre (Albert Einstein), y la revolución cuántica lo fue de apenas un puñado (Planck, Bhor, Heisenberg, Schrödinger, Dirac), la revolución del caos determinista es, en cambio, obra de múltiples. La Teoría del Caos es hija tanto de matemáticos (Poincaré, Hadamard, Birkhoff, Smale, Yorke…) como de físicos, biólogos y otros tantos científicos de campos dispares (Lorenz, May, Feigenbaum…). Atribuir su paternidad únicamente a un hombre, aun cuando sea Lorenz, es una simplificación excesiva. Lorenz fue, por así decirlo uno de los muchos padres.”

Hasta aquí el artículo que el Señor Madrid Casado escribió y fue publicado en el número 3 del volumen 22 de la Revista Española de Física en 2008. (salvo algunas imágenes y apuntes propios, en esencia, el artículo es del Señor Madrid Casado).

El trabajo está bien y nos introduce en la historia de la Teoría del Caos desde sus raíces, y, lo único en lo que podemos disentir del autor es, en el hecho cierto de que, Einstein, autor de la relatividad, también se apoyó en muchos (Mach, Maxwell, Lorentz, -en la primera parte, y, sobre todo en Riemann, en la segunda), aunque eso no le quita ni una pizca del mérito que tiene como científico que supo aunar muchos conocimientos dispersos, unirlos en una sola entidad y hacer ver al mundo lo que allí había. Y, por otra parte, al hablar de la Mecánica Cuántica, excluye a Einstein que, en verdad (aunque la combatió) fue uno de sus padres en aquellos primeros momentos, su trabajo sobre el Efecto Fotoeléctrico (que le dio el Nobel de Física) así lo demuestra. Por otra parte, no habría estado de más y de pasada, comentar que Poincaré fue el autor de la “Conjetura” que lleva su nombre y que ha estado ahí 100 años sin que nadie la resolviera hasta que llegó, un matemático extraño, llamado Perelman (ruso) que sin tener el premio que ofrecían al ganador, puso en Internet la solución. Este personaje, no acudió a la cita en Madrid, donde se celebraba el Año Internacional de las Matemáticas y el rey le entregaría la Medalla Field. Todos se quedaron esperando y él, que vicía con su madre en un apartamento de 65 m2, estaba con su cestita al brazo cogiendo setas en el campo.

De todo esto podemos obtener la consecuencia de que, todo tiene otra historia detrás, y, si profundizamos, la podemos descubrir para conocer de manera completa y precisa, el transcurso de los hechos y los personajes que en ellos tomaron parte.

emilio silvera