lunes, 18 de febrero del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los fenómenos naturales

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza-Imaginación    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

De manera periódica, la Tierra, nuestro planeta, nos hace sentir como se despereza y suspira. Movimientos tectónicos que dan lugar a erupciones volcánicas y otros fenómenos naturales que hacen cambiar la faz del mundo y recrean nuevas formas de vida, nuevas imágenes en la orografía de su superficie y otras formas que no por repetidas, dejan de asombrarnos.

Las cadenas montañosas del Himalaya

La más joven de las cadenas montañosas del mundo, los Himalayas, son también la más alta. Las montañas del Himalaya se han dividido en tres partes: Gran Himalaya, Himalaya Medio y el Himalaya inferior, dependiendo de su ubicación y la altura. Las cordilleras del Himalaya son la cuan de algunos grandes ríos como el Ganges, el Yamuna, Brahamputra, Sutlej, Ravi y Chenab. El Himalaya se forma por varias cadenas montañosas, como Pir Panjal, Dhauladhar, Ladakh, Zanskar, Shivalik y Karakoram. Todas ellas son ricas en flora y fauna y contribuyen a la formación de algunos ríos que son “alimentados” por la nieve, Pir Panjal es en el Himalaya Medio. Se extiende sobre una superficie de 3.574 kilómetros cuadrados y tiene una altitud de 6.500 metros. Pir Panjal se extiende por los estados del norte de Jammu y Cachemira y Himachal Pradesh en la India. Tattakoti es la montaña más alta con una altura de 15.524 pies sobre el nivel del mar.

paleoceno.jpg

El mundo no siempre fue de la misma manera que ahora lo conocemos y, con el tiempo, los grandes movimientos tectónicos han cambiado la faz del mundo en el que vivimos creando nuevas formas y nuevos continentes. Como tantas veces hemos dicho aquí, nada permanece y todo se trtansforma a través del transcurrir del tiempo.

mapaeoceno.jpg

eoceno.jpg

El eoceno marcó la última fase de la orogénesis de las cordilleras, el episodio de alzamiento de las grandes cadenas montañosas que se extienden hacia el norte y el sur en el oeste de las Américas. Al mismo tiempo, el supercontinente de Laurasia siguió partiéndose, la expansión de los suelos marinos comenzó en serio en la sección más septentrional de la dorsal medioatlántica, impulsando a Groenlandia hacia el oeste, alejándola del norte de Europa, y desencadenando la erupción de grandes flujos basálticos, cuyos restos pueden apreciarse en Irlanda, Escocia, Islandia y Groenlandia. 

Bien conocido por todos es ese fenómeno natural que sin avisar, llega de pronto y devasta regiones enteras, son…

Los terremotos

La inmensa mayoría de los terremotos se originan en los procesos geotectónicos a gran escala que crean, hacen chocar y hunden en las zonas de subducción, las placas oceánicas. No menos del 95 por ciento de todos los terremotos se concentran a lo largo de los bordes de las placas y cerca de nueve décimas partes de éstos se localizan en el cinturón Circum-Pacífico, donde las placas, que son relativamente rápidas, están colisionando o deslizándose contra las placas continentales más pesadas. La mayor parte del resto de terremotos están asociados a los puntos calientes, generalmente señalados por volcanes en actividad.

File:Pacific Ring of Fire-es.svg

                                                                                                  Cinturón de Fuego del Pacífico

En conjunto, los terremotos representan una fracción muy pequeña de la energía liberada por los procesos tectónicos de la Tierra. Desde 1.900, en los mayores terremotos se han liberado anualmente una energía media cercana a los 450 PJ, que no supone más del 0’03 por ciento del flujo total de calor terrestre. La liberación anual de energía sísmica de todos los terremotos que se han medido alcanza unos 300 GW, que sumada a la energía de esfuerzo invertida en deformaciones irreversibles y al calor generado por fricción a lo largo de las fallas, daría un total próximo a 1 TW, lo cual representa solamente un 2’5 por ciento del flujo de calor global.

Pero este recuento total nos dice poco de la liberación de energía y de la potencia de un solo terremoto. Aunque la mayoría son tan débiles que pasan desapercibidos para las personas, cada año se producen terremotos terriblemente destructivos, que durante el siglo XX han causado más víctimas mortales que las inundaciones, ciclones y erupciones volcánicas juntas.

La energía de estos terremotos se puede calcular a partir de la energía cinética de las ondas sísmicas generadas por la energía liberada en el esfuerzo de la deformación del suelo, pero rara vez se realizan estos cálculos directamente. Lo más frecuente es deducir la energía del terremoto a partir de la medida de su magnitud o de su momento. La medida típica de la magnitud de un terremoto fue establecida por Charles Richter en 1.935, como el logaritmo decimal de la máxima amplitud (en micrómetros) registrada con un sismómetro de tensión estándar (Word-Anderson) a 100 Km de distancia del epicentro del temblor.

Desde que en 1.942, Richter publicó la primera correlación entre la magnitud de energía sísmica liberada en un temblor, su trabajo (como por otra parte, es de lógica) ha sufrido numerosas modificaciones. La conversión sigue la forma estándar log10 E = a + bM, donde E es la energía liberada en forma de ondas sísmicas (en ergios), M es la magnitud de Richter, y a y b son los coeficientes empíricos que varían entre 6’1 – 13’5 y 1’2 – 2 respectivamente. Otras conversiones alternativas permiten obtener la energía liberada a partir del momento del terremoto, que se define como el producto de la rigidez por el desplazamiento medio de la falla y por la superficie media desplazada.

Los mayores terremotos registrados tienen magnitudes Richter comprendidas entre 8 y 8’9, con liberación de energía sísmica entre 48 PJ y 1’41 EJ. Todos hemos oído en alguna ocasión algún comentario sobre el terremoto de San Francisco de 1.906, donde los cálculos basados en tres métodos utilizados en el esfuerzo dieron valores tan distintos como 9’40 y 175 PJ, y con método cinético se obtuvo 2’5 PJ.

 

             Imagen debida al terremoto de San Francisco

Los terremotos, por ser a la vez de breve duración y estar limitados espacialmente, desarrollan potencias y densidades de potencia extraordinariamente altas. La potencia de un temblor de magnitud 8 en la escala de Richter que durase solamente medio minuto, sería de 1’6 PW, y si toda esta potencia estuviera repartida uniformemente en un área de 80 Km de radio, la densidad de potencia sería tan elevada como 80 KW/m2.

Obviamente, tales flujos pueden ser terriblemente destructivos, pero ni las pérdidas de vidas humanas ni los daños materiales que ocasionan los temblores están correlacionados de una manera sencilla con la energía liberada. La densidad de población o de industrias, así como la calidad de las construcciones, constituyen un factor muchísimo más importante para determinar la mortandad o el impacto económico de los mismo. Por ejemplo, el coste en vidas humanas del gran terremoto japonés que en 1.923 arrasó Tokio, donde existía una alta densidad de casas de madera, fue unas 200 veces más elevado que el terremoto de San Francisco de 1.906 en el que se liberó cuatro veces más energía. También aquí salen perdiendo, como siempre, los pobres.

Otra consecuencia de los terremotos son los Tsunamis

Por otra parte, no podemos olvidar que la superficie del globo terrestre está dominada por las aguas, y los seres humanos viven en la Tierra seca. Sin embargo, vienen los tsunamis. La predicción de estas catástrofes continúa siendo imposible. Se tienen datos, se localizan las zonas de más frecuencia, y conocen las fallas de desgarre y las inversas, los ciclos, etc., pero el conocimiento es aún escaso para prevenir dónde y cuándo se producirán temblores.

Las olas sísmicas que se pueden provocar por terremotos submarinos se propagan durante miles de kilómetros a velocidades de 550 – 720 Km/h, perdiendo en su viaje muy poca potencia. Estas olas, prácticamente invisibles en el mar, se levantan hasta una altura de 10 metros en agua poco profundas y pueden llegar a golpear las costas con intensidades de potencia en superficie vertical de hasta 200 – 500 MW/m2, y con impactos horizontales de intensidad y potencia entre 10 – 100 MW/m2. Son, pues, mucho más potentes que los ciclones tropicales y causan grandes daños tanto materiales como en pérdida de vidas humanas.

Quizás algún día, en el futuro no muy lejano, podamos predecir con tiempo cuándo sucederan estas catástrofes naturales para que, al menos, podamos poner a salvo a los seres vivos.

emilio silvera

 

  1. 1
    Monica
    el 21 de diciembre del 2017 a las 21:32

    Ufff la naturaleza es increíble, así aunque dicen que es manipulada por la tecnología por sociedades secretas miren esto 
    http://misteriosyenigmasdelmundo.blogspot.com.co

    Responder
    • 1.1
      Emilio Silvera
      el 22 de diciembre del 2017 a las 6:23

      ¡Hola, Mónica!

      Cuando empezamos a comentar sobre cosas paranormales… ¡Nos desviamos de la Ciencia! Y, el lugar que nos enseñas, aunque en algunos casos pueda ser sugestivo, lo cierto es que hablar de que Ramanujan estaba en contacto con un dios, y, otras cuestiones de esa misma índole, nos lleva a pensar que, los portales adimensionales a otros mundos no se abren en la habitación de cualquiera, y, son cosas tan tontas y fuera de la realidad que, simplemente tratan de llamar la atención de los ingenuos y poco preparados en éstos ámbitos que, crédulos ellos (son legión desgraciadamente), son adictos a todos estos “cuentos” de una fantasía ingenua y poco creíble.

      Además, la Naturaleza nada tiene que ver con lo que ese lugar nos cuenta.

      Saludos cordiales.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting