domingo, 26 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Sembrar la vida en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un comentario del contertulio Adolfo en el trabajo titulado ¿Nos arrepentiremos de crear la I.A.?,  me ha llevado a mirar por ahí y, encuentro cosas como éstas:

Finalmente, llegará el día en que se extinga completamente la vida en la Tierra. Puede ser mañana o dentro de millones de años, pero ocurrirá. Dejando las especulaciones de lado, hasta donde sabemos, es el único sitio del Universo que posee vida. Pero existe la posibilidad de sembrar las semillas de la vida terrestre en el espacio, para que se desarrolle en planetas jóvenes de sistemas solares ubicados a muchos años luz de distancia. Si dicha empresa fuese realmente posible, ¿tenemos la obligación moral de hacerlo, para proporcionar a nuestra línea evolutiva la oportunidad de continuar de manera indefinida?

Creo que son muchos los que piensan que, hasta dónde nuestras posibilidades lo permitan, sí debemos expandir la vida por otros mundos y dejar abierta la posibilidad de que, cuando el Sol llegue a su fin (si es que antes no ocurre algún trágico suceso), debemos intentarlo al menos.

Michael Mautner, Profesor Investigador de Química en la Universidad de Virginia Commonwealth, dice que: “…sembrar el universo con vida no es sólo una opción, es nuestra obligación moral.”

http://farm3.static.flickr.com/2662/4089800366_5fcd5a008d.jpg

Por otra parte, cuando pensamos en la posinble caída de cometas sobre nuestro planeta, en lo primero que pensamos en en nuestra propia seguridad pero, no nos paramos a pensar en que, dichos impactos, pueden producir grandes levantamientos de material terrestre que, son expulsados de manera violenta al espacio y llevando material biológico, llegar a otros sistemas planetarios y sembrar la vida en ellos.

Con esto, simplemente quiero considerar la posibilidad de que, el Universo tenga sus propios mecanismos para que la vida, no se extinga. Si lo pensamos bien, le ha llevado mucho tiempo (al menos hasta donde sabemos) traerla aquí al planeta Tierra. Se han necesitado miles de años para que las estrellas transmutaran los elementos necesarios para que, la vida, hiciera acto de presencia.

La teoría de la evolución química y celular: Mantiene que la vida apareció, a partir de materia inerte, en un momento en el que las condiciones de la Tierra eran muy distintas a las actuales y se divide en tres. Evolución química. Evolución prebiótica. Evolución biológica.

Todo eso está bien pero…,  la aparición del protoplasma vivo que dio lugar a todo eso… ¿Cómo se pudo formar?

Todos sabemos de las muchas cosas que no sabemos. Sin embargo, eso no impide que incluso pensemos en sembrar la vida por el Universo. ¿Quiénes nos creemos que somos? ¿Nos sentimos moralmente portadores de una misión tan grande como la de procurar conservar la vida en el Universo? ¿Acaso no es el propio Universo el que tiene que hacer su trabajo y expandirla por todos los lugares que sean idóneos para ello? ¿Cómo podemos arrogarnos una misión de tal envergadura?

Personalmente creo que, la idea es innecesaria y que, la Vida, surge por sí misma en todos aquellos lugares que, como aquí en la Tierra, tengan las condiciones necesarias para ello. Incluso es posible que existan formas de vida que, ni podamos imaginar. Claro que, como humanos que somos, tendemos a exaltar lo nuestro y, cuando decimos que tenemos la obligación moral de llevar la vida a otros mundos situados en otros sistemas solares, en lo que en realidad estamos pensando es, en que “nuestra forma de vida, nuestra especie”, no se extinga.

Claro que, no creo que sembrar la vida por el Universo sea algo parecido a sembrar árboles en un jardín. La vida, amigos míos, es simplemente un estado de la materia evolucionada, es ese estado máximo en el que la materia, genera pensamientos y…sentimientos.

    Hasta llegar aquí, nos ha costado miles de millones de años

Lo cierto es que, nuestra imaginación no tiene límites y está en función de los conocimientos que vamos adquiriendo. A mayor saber, mayor imaginación para poder leer artículos en el que se digan cosas como ésta:

“La panspermia es un mecanismo para la dispersión del material orgánico a través de la galaxia, pero los efectos destructivos de los rayos cósmicos y la luz ultravioleta tienden a que la mayor parte de los organismos sean destruidos, o lleguen a un nuevo mundo rotos y muertos. Ahora, Paul S. Wesson, investigador visitante en el Instituto Herzberg de Astrofísica en Canadá, sugiere que la información contenida dentro del material orgánico dañado, podría ser la semilla de la nueva vida. Llama a este proceso necropanspermia.”

Como veréis, por imaginar que no quede. Lo cierto es que, el Universo nos ha demostrado tener sus propios mecanismos para generar la vida y, siendo eso así (que lo es), no creo que tengamos que inmiscuirnos nosotros en tal empresa que, por otra parte y aunque no sea de manera intencionada, ya estamos realizando al enviar ingenios contaminados de microbios a otros lugares del espacio. ¿Cómo sabemos las consecuencias que, finalmente puedan tener esas sondas y naves espaciales que mandamos a investigar el espacio y los objetos que en él están presentes.

Quién sabe lo que no habremos hecho ya con nuestras actividades espaciales que, no siempre están limpias de sospechas y…de bacterias. El mismo planeta Marte tiene ya una larga lista de maquinas terrestres sobre su superficie y, si no había vida propia en aquel planeta… ¿Quién puede afrimar que no la hayamos llevado nosotros?

¡La Actividad Humana! Es a veces tan criticable que, percibe uno la sensación de que aún, no hemos madurado lo suficiente para ocupar el lugar que, en el contexto del Universo tendríamos que tener. La misma idea de sembrar vida en otros mundos puede parecer algo pretenciosa y, si me apuráis mucho, hasta escandalosa.

Desde el supuesto Big Bang…, la perspectiva que del Universo tenemos, nos lleva a pensar que la Vida es algo natural, un estado de la materia que ha pasado por uno y un millón de pruebas hasta surgir contra todo pronóstico en los lugares más insospechados. Y, nosotros, sabiendo eso, queremos ser los responsables de llevarla a otros lugares del Cosmos. ¡Se habrá visto mayor osadía!

                         Moléculas y reacciones químicas

En la Tierra, la mayoría de los átomos no existen por sí mismos, sino que se unen con otros átomos en forma de moléculas. O usando una terminología diferente, podemos decir que la mayoría de los elementos se combinan para formar compuestos. La química se trata acerca de las reacciones que forman y reorganizan los enlaces entre los átomos.

La química orgánica se concentra en el carbono, el cual puede formar una mayor variedad de compuestos que cualquier otro elemento. Las moléculas más importantes para la vida, las proteínas y el ADN, se basan en largas cadenas de átomos de carbono unidos a otros elementos, particularmente hidrógeno, oxígeno y nitrógeno.

     Como todos saben, en las Nebulosas están presentes muchas moléculas necesarias para la vida. En comentarios anteriores, ya nos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Las estrellas convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, en explosiones supernovas que forman nebulosas en las que están los materiales complejos para formar nuevas estrellas, nuevos mundos y…¿Por qué no? nuesvas formas de vida.

Todas las reacciones químicas implican un cambio en la energía. La mayoría de ellas liberan energía, usualmente en forma de calor; nuestros cuerpos son calentados por las reacciones orgánicas basadas, en última instancia, en la oxidación de los alimentos que comemos. (Algunas pocas reacciones liberan energía en forma de luz en lugar de calor, una propiedad que ha sido explotada por las luciérnagas y los gusanos brillantes). Por otro lado, las reacciones “endotérmicas” absorben energía del ambiente. De la misma manera. En las Nebulosas, están presentes fuertes emisiones de energías que emergen de las estrellas nuevas para ionizar el material circundante. ¿Qué efectos, tendrá realmente esas fuertes energías sobre el materia allí presente? ¿Qué cambios se producirán? En Nubes como esas, han sido descubiertos más de 100 moléculas distintas y, algunas, son las que se necesitan para que la química-biológica haga su aparición en los mundos.

La mayoría de las reacciones químicas necesitan un empujón para iniciarse. Este es proporcionado por un “catalizador”, una sustancia que acelera las reacciones sin ser consumida por éstas. Por ejemplo, las enzimas son catalizadores biológicos de los cuales depende la vida.

Claro que nosotros, aunque no sea conscientemente, podemos enviar las semillas de la vida a otros lugares. Nuestros experimentos y misiones extraterrestres conllevan esa posibilidad que, aunque nunca la podamos constatar, ciertamente está ahí. Sin embargo, sigo apostando por la otra forma. La manera natural de que la Vida se genere en el Universo es, el Universo mismo, el que la tiene que determinar.

Insisto: ¿Quiénes somos nosotros para subrogarnos una misión tan importante?

emilio silvera

¡El carbono! elemento esencial para la vida

Autor por Emilio Silvera    ~    Archivo Clasificado en Química    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No pocas veces nos hemos podido preguntar que, dadas las condiciones que imperaban en la Tierra hace cuatro mil millones de años, ¿que probabilidades había de que surgiera la vida? Lo más fácil sería responder que la Vida era inevitable, como lo demuestra el simple hecho de que nosotros estemos aquí. Es obvio que la vida sí se inicio y que nuestra presencia la testifica pero, ¿tenía que iniciarse? O, preguntado de otra manera, ¿era inevitable la emergencia de la vida a partir de un caldo químico o cualquier otra cosa, contando con millones de años?

Nadie conoce la respuesta a esa pregunta. El origen de la vida puede haber sido también, una extraordinaria “carambola”, un accidente químico de enorme improbabilidad, un suceso tan poco probable que nunca sucedería dos veces en todo el universo. O quizá haya sido tan poco notable y tan predeterminada como la formación de los cristales de sal. ¿Cómo podemos saber que explicación es la correcta?

http://4.bp.blogspot.com/_DzHETx-YgFA/TO_Xx6cLoyI/AAAAAAAAAgg/u1TxTw-XALI/s1600/I11-30-cyanobacteria.jpg

 

 

En algún momento del pasado de la Tierra, estimado en aproximadamente 2.500 – 3.500 millones de años, tuvo lugar lo que denominamos revolución oxigénica, durante la cual las cianobacterias produjeron tanto oxígeno que la atmósfera y los océanos quedaron literalmente saturados de este nuevo compuesto químico. Tal producción de oxígeno afectó drásticamente a la biósfera del planeta. Antes de la revolución oxigénica, pocos organismos estaban adaptados para vivir en presencia de oxígeno abundante; las moléculas de oxígeno actuaban como un veneno, reaccionando con las moléculas orgánicas complejas y degradándolas. Debido a esto, la mayor parte de la vida existente en ese momento debió quedar exterminada; las cianobacterias serían responsables de una gran extinción masiva.

Sabemos que la vida terrestre está basada en algunas moléculas muy complicadas con estructuras cuidadosamente elaboradas, incluso en los organismos simples, el ADN contiene millones de átomos. La secuencia exacta de los átomos es crucial. No se puede tener una secuencia arbitraria porque el ADN es un manual de instrucciones para conseguir un organismo y, si cambiamos algunos átomos se pondrá en peligro toda la estructura del organimo.Claro que pensar en manejar aminoácidos al azar y obtener la secuencia correcta para formar una molécula de proteína por accidente…es complicado. Las probabilidades en contra de producir las proteínas por puro azar son del orden de 1040000 contra 1 seguido de cuarenta mil ceros, cuya escritura completa necesitaría de muchas hojas en blanco para ser reflejada. Fred Hoyle, siempre hacía esta comparación: “Un ensamblaje expontáneo de la vida sería lo mismo y tendría las mismas probabilidades que si un Tornado barriera un depósito de chatarra y oridujera un Boeing 747 listo para funcionar.

La inmensa complejidad que el misterio de la vida conlleva, nos ha llevado a pensar en la posilidad extraterrestre y en otros múltiples modelos que, de alguna manera, nos puedieran alcarar ese origen que tan afanosamente buscamos sin éxito…de momento. Algunas personas sienten que algo tan básico como nuestra propia existencia  no puede deberse a un azar químico, y que barrer el problema bajo la alfombra con la palabra “accidente” es una manera de escabullirse. A veces se cita el principio de mediocridad: no hay nada especial o excepcional en nuestro lugar en el Universo. La Tierra parece un planetas típico alrededor de una estrlla típica en una galaxia típica. Si eso es así (que lo), ¿por qué no sería, también típica la vida en la Tierra?

Pero, a todo esto, por mucho que hayamos podido elucubrar sobre el tema, lo cuaeto es que, no podemos contestar la pregunta: ¿Por qué y cómo realmente, llegamos aquí, y, si tambie´n podemos estar en otros mundos?

La enorme variedad de formas, colores, comportamientos, composición…, que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.

Refiriéndonos al silicio,  señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.

El silicio púede econfigurar muchas formas y, no creo que entre ellas se puedan encontrar las vivientes, ya que, el átomo de silicio no llega a tener las amplias propiedades que tiene el Carbono. Sin embargo, no son pocos los que opinan que puede existir alguna clase de vida basada en el silicio y, desde luego, aunque no lo crea probable tampoco tengo conocimientos suficientes para poder negarlo. ¿quién sabe lo que por ahí fuera pueda existir en esos mundos perdidos en la lejanía del espacio?

El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.

Leer más

¡Increíble mecánica cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (16)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación aproximada del átomo de Helio, en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico. En realidad, ese minúsculo granito másico formado por los nucleones (protones y neutrones, que a su vez están formados por quarks inmersos en una nube de gluones), es la verdadera materia, el resto, podríamos decir que son espacios vacíos en los que, los electrones cirdulan a increíbles velocidades formando un campo magnético que hace que el átomo nos parezca enteramente compacto.

http://astromarca.com/wp-content/uploads/2010/10/galaxia-anillo.jpg

Todos los objetos que podemos contemplar en el Universo, como la galaxia anillo de la imagen, están formados pequeñas partículas que llamamos elementales de tamaño  infinitesimal, los Quarks y los Leptones que son las partículas que, reúnidas en tripletes, conforman los protones y los neutrones que son rodeados por los electrones para hacer átomos que, a su vez, se unen unos a otros para formar las moléculas que construyen los objetos que conocemos incluídas las galaxias y nosotros mismos. En definitiva. lo que llamamos átomos que se juntan para formar células que, se juntan para formar moléculas que, se juntan para formar los cuerpos de materia que, vivos e inertes, pueblan nuestro Universo.

En el centro del átomo pues, se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Viajando a velocidades cercanas a la de la luz, dos partículas pueden chocar de forma violenta y, de ellas, surgen otras partículas más elementales de las que estan conformadas las primeras. Un protón está hecho de dos Quarks up y un Quark down, mientras que un neutrón, está hecho de dos Quarks down y un Quark up.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792,458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En esta teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de “energía en reposo” de una partícula cualquiera, como se denota a continuación:

E = M x c2

Esto es, si la masa M se define por la ley de Newton F = M x a.

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividad también sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz.

El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista. Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

     La fuerza de Gravedad incide en todos los objetos celestes, y, hasta la luz, se ve afectada cuando interacciona con cuerpos muy densos como se ha podido comprobar en multitud ee ocasiones. Ne encantaría saber como funciona en verdad la Gravedad, esa fuerza misteriosa que mantiene unidos los planetas alrededor del Sol y a nosotros sobre la superficie terrestre

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

photo

Cuatro imágenes del mismo cuásar rodean una galaxia en un típico espejismo topológico

En vez de ser plano e infinito, el universo podría estar replegado en sí mismo y nuestra percepción distorsionada por rayos luminosos que se multiplican. Como en un espejismo. Algún día sabremos, como es, en realidad nuestro Universo.

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

 g = \sum_{i,j=1}^n g_{ij} \ dx^i \otimes dx^j, \qquad \qquad [g_{ij}] = \begin{pmatrix} g_{11} & g_{12} & ... & g_{1n} \\ g_{21} & g_{22} & ... & g_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ g_{n1} & g_{n2} & ... & g_{nn} \end{pmatrix}

 

 

Eso permite hacer que el espacio tenga estructura de Variedad de Riemann y en él pueda definirse la llamada forma de volumen que es la n-forma  siguiente:

 

\eta_V = \frac{\sqrt{\det g}}{n!}\ dx^1\land dx^2 \land \dots \land dx^n

En esas condiciones el hipervolumen de una región Ω (con frontera suficientemente regular) viene definida por la integral:

 

HV(\Omega)= \int_\Omega \eta_V := \int_\Omega \left(\sqrt{\det g}\right)\ dx^1dx^2\dots dx^n

 

Pero dejemos la complejidad matemática y volvamos a la hisotoria que se cuenta con palabras sencillas.

 

 

 

 

Leyendo el material enviado por un amigo al que pidió ayuda (Marcel Grossman), Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

 De la lección de Riemann se deduce que en espacios multidimensionales se crea el principio de que el espacio múltiple (de más dimensiones) unifica las leyes de la naturaleza encajándolas en el tensor métrico como piezas de un rompecabezas N-dimensional. Riemann anticipó otro desarrollo de la física; fue uno de los primeros en discutir espacios múltiples y conexos, o agujeros de gusano.

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas. El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

Un electrón y un protón se atraen de dos maneras, por un lado a causa de que el primero tiene carga eléctrica positiva y el segundo negativa, y ya se sabe que cargas contrarias se atraen. Por el otro, a causa de sus propias masas, como efecto de la fuerza de la gravedad. Se puede calcular que la atracción causada por las cargas eléctricas es aproximadamente “10 elevado a 40” veces mayor que la atracción gravitatoria.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

                                                   La curvatura del espacio-tiempo se produce por la gravedad que incide y está presente

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros (también el mismo Einstein aportó su granito de arena), nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

 

El gravitón hace tiempo que se ríe de nosotros…y se esconde donde no lo podamos ver.

Hablamos de la partícula mediadora, el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

Nos gustaría saber si existe algo más allá de los Quarks, esas infinitesimales partículas “elementales” que conforman protones y neutrones.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

En física moderna, el fotón es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio. El fotón tiene una masa invariante cero,y viaja en el vacío con una velocidad constante c. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo”). Se comporta como una onda en fenómenos como la refracción que tiene lugar en una lente, o en la cancelación por interferencia destructiva de ondas reflejadas; sin embargo, se comporta como una partícula cuando interacciona con la materia para transferir una cantidad fija de energía.

La luz, ese fenómeno natural que nos tiene guardadas muchas sorpresas. Está hecho de fotones, el cuanto de luz, y, le da respuesta al campo gravitatorio de un agujero negro que la engulle, y, si no tiene masa, ¿cómo ocurre eso? ¡sabemos tan poco! (de algunas cosas). Como antes decía, la luz es algo que aún no hemos llegado a comprender en toda su magnitud y, desde luego, esconde secretos que debemos desvelar si pretendemos conocer, de verdad, el Universo.

Representación esquemática de la forma en que el átomo de mercurio (Hg) emite fotones de luz. utravioleta, invisibles para el ojo humano y como el átomo de fósforo  (P)  los  convierte  en  fotones  de. luz blanca visible, tal como ocurre en el interior del tubo de una lámpara fluorescente.

Representación esquemática de la forma en que el átomo de mercurio (Hg) emite fotones de luz. utravioleta, invisibles para el ojo humano y como el átomo de fósforo (P) los convierte en fotones de luz blanca visible, tal como ocurre en el interior del tubo de una lámpara fluorescente.

Los físicos de partículas suelen encontrarse en sus vidas profesionales con el inconveniente de que aquello con lo que trabajan es tan sumamente pequeño que se vuelve indetectable tanto para el ojo humano como para los más avanzados sistemas de microscopía. Es cierto que en la actualidad se pueden conseguir imágenes en las que se distinguen átomos individuales cuando estos son lo suficientemente grandes, pero de ahí a poder visualizar un sólo protón, o un aún más pequeño electrón, hay un escalón insalvable para la técnica actual.

¿Cómo pueden, pues, los físicos saber que aquello con lo que trabajan no es un mero ente creado por su mente? ¿Cómo se pueden asegurar de que las partículas subatómicas existen en realidad? La respuesta es obvia: a través de su interacción con otras partículas o con otro sistema físico; y un ejemplo extraordinario de ello es el que se puede contemplar en una cámara de niebla.

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por estos aparatos “cámaras de niebla”. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e- 0’5109990 ½
Muón μ- 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π- 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k- 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ- 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ- 1.321’3 ½ 1’64 × 10-10
Omega – Ω- 1.672’4 0’82 × 10-10

 

 

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π-, al igual que ocurre con k+ y k-. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

Nunca me cansaré de mirar ésta maravilla que, no por pequeña, deja de ser de lo más importante del Universo. De hecho, todo lo que conocemos está conformado por estos infinitesimales objetos. Todo lo grande está hecho de cosas pequeñas.

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.  En la física de partículas,  el isospín (espín isotópicoespín isobárico) es un número cuántico relacionado a la interacción fuerte y aplicado a las interacciones del neutrón y del protón. El isospín fue introducido por Werner Hesinmberg para explicar muchas simetrías.

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

Estamos huecos y vibramos. Los electrones van a toda prisa; parece que dan siete mil billones (7.000.000.000.000.000 = 7×1015) revoluciones por segundo. A esa increíble velocidad casi puede decirse que cada electrón está simultáneamente en todos los puntos de su órbita. Tienen que ir así de rápidos para generar la suficiente fuerza centrífuga que contrarreste la también fortísima fuerza de atracción eléctrica del núcleo (los protones tienen carga positiva, los electrones negativa).

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planck, h, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electrones pudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita. Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

           ENTRE FERMIONES Y BOSONES

Lo que vemos arriba son nubes compuestas por dos isótopos de litio: la de la izquierda está formada a partir de bosones, mientras que la de la derecha está formada a partir de fermiones. A medida que baja la temperatura, los bosones se apilan unos sobre otros, pero los fermiones se mantienen separados, ya sabeis, el Principio de exclusión de Pauli.

Las nubes de átomos se muestran a tres temperaturas diferentes: 810, 510 y 240 nano-Kelvin. Un nano-Kelvin es una temperatura extremadamente fría – es una milmillonésima de grado sobre el cero absoluto, que es -460 grados Fahrenheit. Cuando la temperatura es más fría, uno puede ver que el gas de bosones, que se muestra a la izquierda, se funde en una nube compacta, mientras que el tamaño de los gases de fermiones se estabiliza a un tamaño específico. Esto ilustra el principio de la “degeneración de Fermi”, en que los fermiones no se puede condensar aún más, debido a una ley de la mecánica cuántica – el principio de exclusión de Pauli – que mantiene fermiones idénticos de ocupar el mismo espacio al mismo tiempo. El mismo efecto se estabiliza estrellas enanas blancas contra el colapso bajo su propia atracción gravitatoria, después de haber reducido su núcleo que en principio adquiriera una dimensión definitiva, a los que no estarán ajenos los elementos que son bosones como aportante de una sección mucho mas reducida a igual masa.

La mecánica cuántica nos muestra el extraño y fascinante “universo” de lo muy pequeño. Allí suceden cosas que contradicen el sentido común y que, la naturaleza nos dice que es el menos común de los sentidos.

Si estos son los sentidos, ¿dónde está el llamado “sentido común? ¿Nos indica Einstein su morada?

 Sí, ese debe ser el sitio en el que debería estar

Sigamos. Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermiones se comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.

En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.

  Son muchas las maravillas que existen en ese universo de lo pequeño que, en definitiva, es lo que hace que pueda existir lo grande.

Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.

                 Richard Feinman, Físico de nacimiento

En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:

  • La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
  • Comparada con las demás interacciones, ésta tiene un alcance muy corto.
  • La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
  • Los mediadores de la interacción débil, llamados W+, W- y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).

Abdus Salam

    Abdus Salam (1926-1996)

Físico paquistaní, conocido por sus aportaciones a la comprensión de las interacciones de las partículas elementales. Asistió al Colegio del Gobierno en Lahore y recibió el doctorado en matemáticas y física por la Universidad de Cambridge en 1952. Dio clases en ambas instituciones antes de ser profesor de física teórica en el Colegio Imperial de Ciencias y Tecnología de la Universidad de Londres en 1957, y fue nombrado director del Centro Internacional de Física Teórica de Trieste, Italia, cuando se fundó en 1964. En 1967, junto con el físico estadounidense Steven Weinberg, Salam ofreció una denominada hipótesis de unificación que incorporaba los hechos conocidos sobre las fuerzas electromagnética y nuclear débil. Cuando se contrastó, la hipótesis mantuvo su vigencia, al contrario de otras muchas hipótesis alternativas.

 Steven Weinberg

La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.

Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente). La interacción es fuerte. En realidad, la más fuerte de todas y hace posible mantener estable los átomos para que el Universo sea tal como lo conocemos. Es tan fascinante el mundo de la mecánica cuántica que, la verdadera pena es que aún no lo podamos comprender (del todo) y que mantenga regiones plagadas de oscuridad en las que no hemos podido entrar por falta de esa “luz cegadora” tan necesaria y que, los humanos, llamamos inteligencia.

La fuente del artículo es variada pero, el armazón principal es de Gerard ´t Hooft, el físico premio Nobel de 1999 que, con su manera de ver la Naturaleza de las partículas, abrió nuevos caminos y nos dejó ideas como esa teoría del “universo holográfico”.

¡Es tanto lo que no sabemos!

emilio silvera