jueves, 23 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Implosión de una estrella

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Verdaderamente si pudiéramos contemplar de cerca, el comportamiento de una estrella cuando llega el final de su vida, veríamos como es, especialmente intrigante las transiciones de fase de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría. Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas que aplicaron Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica y, dependiendo de su masa, explosiona como supernova para formar una inmensa nebulosa o, se tranforma en nebulosa planetaria, más pequeña.

Especialmente intrigante es la apariencia de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría. Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas de Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica.

Por mucho tiempo que uno espere, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Este era el mensaje inequívoco de Oppenheimer y Snyder.

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurre sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si el movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pueda parecer, aún había otra predicción más extrañas de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

Allá por el año 1939, cuando Oppenheimer y Snyder descubrieron estas cosas, los físicos ya se habían acostumbrados al hecho de que el tiempo es relativo; el flujo del tiempo es diferente medido en diferentes sistemas de referencia que se mueven de diferentes formas a través del Universo. Claro que, nunca antes había encontrado nadie una diferencia tan extrema entre sistemas de referencia. Que la implosión se congele para siempre medida en el sistema externo estático, pero continúe avanzando rápidamente superando al punto de congelación medida en el sistema desde la superficie de la estrella era extraordinariamente difícil de comprender. Nadie que estudiara las matemáticas de Oppenheimer y Snyder se sentía cómodo con semejante distorsión extrema del tiempo. Pero ahí estaba, en sus fórmulas. Algunos podían agitar sus brazos con explicaciones heurísticas, pero ninguna explicación parecía muy satisfactoria. No sería completamente entendido hasta finales de los cincuenta.

Fue Wheeler el que discrepó del trabajo de Oppenheimer y Snyder, alegando, con toda la razón que, cuando ellos habían realizado su trabajo, habría sido imposible calcular los detalles de la implosión con una presión realista (presión térmica, presión de degeneración y presión producida por la fuerza nuclear), y con reacciones nucleares, ondas de choque, calor, radiación y expulsión de masa. Sin embargo, los trabajos desde las armas nucleares de los veinte años posteriores proporcionaron justamente las herramientas necesarias.

Presión, reacciones nucleares, ondas de choque, calor radiación y expulsión de masa eran todas ellas características fundamentales de una bomba de hidrógeno; sin ellas, una bomba no explosionaría. A finales de los años cincuenta, Stirling Colgate quedó fascinado por el problema de la implosión estelar. Con el apoyo de Edward Teller, y en colaboración con Richard White y posteriormente Michael May, Colgate se propuso simular semejante implosión en un ordenador. Sin embargo, cometieron un error, mantuvieron algunas de las simplificaciones de Oppenheimer al insistir desde el principio en que la estrella fuera esférica y sin rotación, y, aunque tuvieron en cuenta todos los argumentos que preocupaban a Wheeler, aquello no quedó perfeccionado hasta después de varios años de esfuerzo y, a comienzo de los años sesenta ya estaban funcionando correctamente.

Un día a principio de los años sesenta, John Wheeler entró corriendo en la clase de relatividad de la Universidad de Princeton. Llegaba un poco tarde, pero sonreía con placer. Acababa de regresar de una visita a Livermore donde había visto los resultados de las simulaciones recientes de Colgate y su equipo. Con excitación en su voz dibujó en la pizarra un diagrama tras otro explicando lo que sus amigos de Livermore habían aprendido.

Cuando la estrella en implosión tenía una masa pequeña, desencadenaba una implosión de supernova y formaba una estrella de neutrones precisamente en la forma que Fritz Wicky había especulado treinta años antes. Sin embargo, si la estrella original era más masiva lo que allí se producía (aparte de la explosión supernova) era un agujero negro notablemente similar al altamente simplificado  modelo que veinticinco años  calcularon Oppenheimer y Snyder. Vista desde fuera, la implosión se frenaba y se quedaba congelada en la circunferencia crítica, pero vista por alguien en la superficie de la estrella, la implosión no se congelaba en absoluto. La superficie de la estrella se contraía a través de la circunferencia crítica y seguía hacia adentro sin vacilación.

Lo cierto fue que allí, por primera vez, se consiguió simular por ordenador la implosión que debía producir agujeros negros. Está claro que la historia de todo esto es mucho más larga y contiene muchos más detalles que me he saltado para no hacer largo el trabajo que, en realidad, sólo persigue explicar a ustedes de la manera más simple posible, el trabajo que cuesta obtener los conocimientos que no llegan (casi nunca) a través de ideas luminosas, sino que, son el resultado del trabajo de muchos.

Hoy, sabemos mucho más de cómo finaliza sus días una estrella y, dependiendo de su masa, podemos decir de manera precisa que clase de Nebulosa formará, que clase de explosión (si la hay) se producirá, y, finalmente, si el resultado de todo ello será una estrella enana blanca que encuentra su estabilidad final por medio del Principio de exclusión de Pauli (en mecánica cuántica)que se aplica a los fermiones pero no a los Bosones (son fermiones los quarks, electrones, protones y neutrones), en virtud del cual dos partículas idénticas en un sistema, como los electrones en un átomo o quarks en un hadrón (protón o neutrón, por ejemplo), no pueden poseer un conjunto idéntico de números cuánticos.

Una estrella masiva alejándose de su antiguo compañero se manifiesta haciendo un imponente surco a través de polvo espacial, como si se tratase de la proa de un barco. La estrella, llamada Zeta Ophiuchi, es enorme, con una masa de cerca de 20 veces la de nuestro Sol. En esta imagen, en los que se ha traducido la luz infrarroja a colores visibles que vemos con nuestros ojos, la estrella aparece como el punto azul en el interior del arco de choque. Zeta Ophiuchi orbitó una vez alrededor de una estrella aún más grande. Pero cuando la estrella explotó en una supernova, Zeta Ophiuchi se disparó como una bala. Viaja a la friolera 24 kilómetros por segundo, hacia la zona superior izquierda de la imagen.

Mientras la estrella se mueve través del espacio, sus poderosos vientos empujan el gas y el polvo a lo largo de su camino en lo que se llama un arco de choque. El material en el arco de choque está tan comprimido que brilla con luz infrarroja qu el WISE puede ver. El efecto es similar a lo que ocurre cuando un barco cobra velocidad a través del agua, impulsando una ola delante de él.  Esta onda de choque queda completamente oculta a la luz visible. Las imágenes infrarrojas como esta son importantes para arrojar nueva luz sobre la región.

El Principio de Exclusión de Pauli: o, por qué no implosionamos

¿Cuál es la razón por la que la materia no se colapsa sobre sí misma? El mismo principio que impide que las estrellas de neutrones y las estrellas enanas blancas implosionen totalmente y que, llegado un momento, en las primeras se degeneran los neutrones y en las segundas los electrones, y, de esa manera, se frena la compresión que producía la gravedad y quedan estabilizadas gracias a un principio natural que hace que la materia normal sea en su mayor parte espacio vacio también permite la existencia de los seres vivos. El nombre técnico es: El Principio de Exclusión de Pauli y dice que dos fermiones (un tipo de partículas fundamentales) idénticos y con la misma orientación no pueden ocupar simultáneamente el mismo lugar en el espacio. Por el contrario, los bosones (otro tipo de partículas, el fotón, por ejemplo) no se comportan así, tal y como se ha demostrado recientemente por medio de la creación en el laboratorio de los condensados de Bose-Einstein.

Monografias.com

Ahí se ha formado ya una Nebulosa planetaria y en su centro, muy caliente y radiando en el ultravioleta más energético, la “nueva” estrella enana blanca, hecha de la materia de la estrella orioginal muy comprimida y densa que, poco a poco se irá enfriando hasta quedar como lo que en realidad es, un cadáver estelar.

Pero, estábamos diciendo: “…no pueden poseer un conjunto idéntico de números cuánticos.” A partir de ese principio, sabemos que, cuando una estrella como nuestro Sol deja de fusionar Hidrógeno en Helio que hace que la estrella deje de expandirse y quede a merced de la Gravedad, ésta implosionará bajo el peso de su propia masa, es decir, se contraerá sobre sí misma por la fuerza gravitatoria pero, llegará un momento en el cual, los electrones, debido a ese principio de exclusión de Pauli que les impide estar juntos, se degeneran y se moverán de manera aleatoria con velocidades relativista hasta el punto de ser capaces de frenar la fuerza provocada por la gravedad, y, de esa manera, quedará estabilizada finalmente una estrella enana blanca. Si la estrella original es más masiva, la degeneración de los electrones no será suficiente para frenar la fuerza gravitatoria y, los electrones se fusionaran con los protones para convertirse en neutrones que, bajo el mismo principio de exclusión sufrirán la degeneración que frenará la fuerza de gravedad quedando entonces una estrella de neutrones. Por último, si la estrella es, aún más masiva, ni la degeneración de los neutrones será suficiente para frenar la inmensa fuerza gravitatoria generada por la masa de la estrella que, continuará la implosión contrayéndose cada vez más hasta desaparecer de nuestra vista convertida en un agujero negro.

¿Qué forma adoptará, qué transición de fase se produce en la materia dentro de una Singularidad?

¡Resulta todo tan complejo!

emilio silvera

Los Genes marcan lo que somos

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Existen “claves” que son diagramas , trazados a escala, de cuatro moléculas (bases del nucleótido) cuya excepcional interrelación interna, inserta bajo la cremallera del ácido desoxirribonucleico (ADN), contiene el código de toda la vida en la Tierra. Se ha llegado a explicar con precisión cómo miles de características únicas, que varían de un individuo a otro, se tramsmiten intactas de generación en generación. Este descubrimiento fue el prtogreso más grande del siglo XX en el campo del conocimiento biológico.

                   Situación del ADN dentro de una célula

En el interior de cada célula de nuestro cuerpo tenemos cadenas de ADN increíblemente largas. Es la materia prima de los genes. Almacena, reproduce y transmite todas nuestras características personales y únicas, nuestra herencia genética. Estas cadenas de ADN contienen las plantillas codificadas de las proteínas, que son los ladrillos de nuestros cuerpos.

Esta codificación es una serie de combinaciones de cuatro moléculas llamadas bases de los nucleótidos (y representadas por las letras A, G, C y T), que dan todas las instrucciones necesarias para fabricar nuestro cuerpo. Heredamos ADN de nuestros dos progenitores y, puesto que recibimos una mezcla única de ambos, la cadena de ADN de cada uno de nosotros es ligeramente distinta de la de los demás. Nuestro ADN es como una huella dactilar molecular.

Durante la reproducción sexual humana, el ADN de los progenitores se copia y se transmite en proporciones iguales. Es importante saber que, aunque casi todo el ADN de cada progenitor se separa durante la reproducción, en cada generación se barajan y se mezclan pequeños fragmentos de las dos aportaciones. Por mezcla no se entiende la distribución aleatoria y masiva, sino pequeños intercambios, duplicaciones y permutas entre el lote materno y el lote paterno de ADN. Este fenómeno se llama técnicamente “recombinación”. Afortunadamente para los fines de los investigadores genéticos, hay dos pequeñas porciones de nuestro ADN que no se recombinan. El ADN no recombinante es más fácil de rastrear, dado que su información no se altera durante su transmisión de una generación a otra. Las dos pequeñas porciones son el ADN mitocondrial (ADNmt) y la parte no recombinante del cromosoma Y (YNR).

Así que, el ADN mitocondrial es útil para el estudio evolutivo, en primer lugar, porque su variabilidad depende exclusivamente de las mutaciones, ya que no sufre el ya mencionado proceso de recombinación durante la concepción. En segundo lugar, permite un seguimiento de la línea materna evolutiva, pero solamente se podría estudiar en zonas que se saben estuvieron habitadas por mujeres, por lo que poría traer fallas, en caso de que la población femenina fuera mayor a la masculina. Aquellas regiones donde el ADN m. presnetan mayor variabilidad, significaran que allí se han producido mayores mutaciones en el tiempo, por tanto serán más antigua, rastreándose así nuestra posible zona de origen. El número de genes en el ADN mitocondrial es de 37, frente a los 20.000 – 25.000 genes del ADN cromosómico nuclear humano.

Así que, decir que recibimos el 50% de nuestro ADN de nuestro padre y el otro 50% de nuestra madre no es totalmente verdadero. Un pequeño fragmento de nuestro ADN se hereda sólo a través de la madre. Es al que antes nos referíamos como el ADN mitocondrial porque se trata de filamentos circulares individuales contenidos en pequeñas cápsulas tubulares llamadas mitocondrias que funcionan un poco como baterias en el interior del citoplasma celular.

Algunos biólogos moleculares dicen que, cuando el mundo era joven, la mitocondria era un organismo autónomo con su propio ADN y poseía el secreto de generar muchísima energía. Invadió organismos unicelulares nucleados y allí sigue desde entonces, dividiéndose, como la levadura, por fusión binaria. Aunque los varones reciben y usan el ADN mitocondrial de la madre, no pueden transmitirlo a los hijos. El esperma tiene mitocondrias propias para propulsar el largo viaje desde la vagina hasta el óvulo, pero al entrar en éste, las mitocondrias masculinas se marchitan y se mueren.

Así pues, cada cual hereda el ADNmt de la madre, quer a su vez lo ha heredado intacto de su madre y ésta de la suya, hasta el infinito; de ahí que el nombre popular del ADNmt, “el gen EVA”. En última instancia, todas las personas que viven hoy en el mundo han heredado su ADN mitocondrial de una única antepasada que vivió hace casi 200.000 años. Este ADNmt nos proporciona un raro punto de estabilidad en las arenas movedizas de la transmisión del ADN. Sin embargo, si todos los cromosomas EVA del mundo actual fueran una reproducción exacta del primer gen Eva, todos serían idénticos. Sería algo prodigioso, pero significaría que el ADNmt tiene poco que decirnos sobre nuestra prehistoria. Saber que todas las mujeres descienden de una remota EVA común resulta emocionante, pero no nos ayuda a reconstruir la vida de cada una de sus hijas. Necesitamos un poco de variedad.

La Mutación del ADN

Los genes pueden mutar (transformarse) de diferentes formas. La forma más sencilla de mutación implica un cambio en una base individual a lo largo de la secuencia de bases de un gen en particular–muy parecido a un error tipográfico en una palabra que ha sido mal escrita. En otros casos, se pueden agregar o eliminar una o más bases. Y algunas veces, grandes segmentos de una molécula de ADN se repiten, se eliminan o se traslocan accidentalmente.

Así, aparecen mutaciones puntuales del ADN. Al heredar el ADNmt de nuestra madre, a veces hay un cambio en una o más “letras” del código del ADNmt, aproximadamente una mutación cada mil generaciones. La nueva letra, llamada “mutación puntual”, se transmitirá desde entonces a todas las descendientes. Aunque otra mutación es un fenómeno raro dentro de una sóla línea familiar, la probabilidad total de las mutaciones aumenta de manera visible a causa de la cantidad de mujeres que tienen hijas. Así, en una generación, un millón de mujeres podrían tener más de mil hijas con una mutación personal e intransferible. Por este motivo, y salvo que hayamos tenido una antepasada común en los últimos 10.000 años, cada cual tiene un código que es ligeramente distinto del de los demás.

Spliceman

                   Sí, aunque pequeñas, existen esas probabilidades de mutaciones del genéticas

Claro que, también existe el “Gen Adán”. A semejanza del ADNmt de transmisión materna y que reside fuera del núcleo de la célula, dentro del núcleo hay un paquete de genes que sólo se transmite por línea masculina. Es el cromosoma Y, el cromosoma definidor de la masculinidad. Exceptuiando un pequeño segmento, el cromosoma Y no desempeña ningún papel en el promiscuo intercambio de ADN que se permiten otros cromososmas, esto significa que, al igual que el ADNmt, la parter no recombinable del cromosoma Y pasa intacta a cada generación y puede ser rastreado, siguiendo una linea ininterrumpida, hasta nuestro primer antepasado masculino.

Los cromosomas Y se utilizan desde hace menos tiempo que el ADNmt en la reconstrucción de árboles genéticos y existen problemas para estimar el alcance cronológico. Cuando se solucionen, el método YNR podría tener una resolución cronológica y geográfica mucho mayor que el ADNmt, tanto para el pasado reciente como para el remoto. Esto se debe sencillamente a que el YNR es mucho mayor que el ADNmt y en consecuencia tiene mayor viabilidad potencial.

Bueno, tanto este artículo, o, pasaje (de una parte de nosotros) como el del día anterior que llamé: Estamos señalados por muchos dones pero…¡El habla!, nos viene a confirmar que, la vida, no es sólo “la materia evolucionada”. ¡La Vida! es mucho más que todo eso y, seguramente, como nos dice el amigo Kike, sea una parte sustancial del Universo que, a través de su sabia Naturaleza, nos ha creado para poder contemplarse (también lo decía Nelson) como nos dijo el sabio.

emilio silvera

Fuente: Los Senderos del Edén de Stephen Oppeheimer.

Un paseo por las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estrella binaria:

 

Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas.

Par de estrellas unidas por su atracción gravitatoria mutua y orbitando en torno a su centro de masas común, en contraposición a una doble óptica, que no esta ligada gravitatoriamente. Una binaria visual es aquella que se puede resolver visual o fotográficamente, mientras que una binaria astronómica es detectable únicamente por las irregularidades en el movimiento propio de alguna de las estrellas visibles. En las binarias eclipsantes son los eclipses los que aportan evidencias directas de la existencia de un compañero, mientras que en las binarias espectroscópicas son los desplazamientos Doppler de las líneas espectrales.

 

http://dc112.4shared.com/download/LMNZAJ11/7BinarySystems1024.jpg

 

 

En otros artículos hablabámos de la posible estrella de Quark, una rareza y, aquí podemos ver un Sistema de estrellas binarias múltiples Los períodos orbitales de las binarias varían entre minutos y cientos de años. Las binarias con componentes muy próximos entre sí se subdividen de acuerdo a cuánto llena cada componente su lóbulo de Roche, dando lugar a binarias separadas, semiseparadas y de contacto. Las últimas dos categorías incluyen a las binarias en interacción, en las que existe una transferencia de masa. Muchas binarias son también estrellas variables, siendo las más importantes las distintas formas de binarias cataclísmicas, las supernovas de tipo I y ciertas fuentes variables de rayos X.

 

 

http://dc119.4shared.com/download/nYeQTkJQ/8CloseBinaries1024.jpg

 

En ocasiones, las binarias llegan a estar tan cerca que, finalmente, se produce el contacto

 

Estrella “capullo”:

 

 

En la Nebulosa del Capullo, no se observan proto estrellas, las existentes, jóvenes, ya formadas se encuentran en desarrollo, sería mas preciso decir en evolución,produciendo agua en abundancia y soplando con fortaleza como para expandirla.  Se puede observar transformada en nebulosa de reflexión rodeando la estrella azul en la parte superior de la imagen (deberá ser ampliada),y en la parte inferior derecha, filtra el color de las estrellas como un halo. Abajo la imagen centrada en el Capullo propiamente dicho, vemos la estrella masiva central que sopla generando la apertura de la nebulosa.

Estrella Capullo (arriba la podemos contemplar) aparece rodeada por una densa nube de gas y polvo que absorbe parte de la energía radiante de la estrella y la reemite en longitudes de onda infrarrojas. En casos extremos la estrella puede estar completamente oscurecida ópticamente, siendo sólo una fuente infrarroja. Las fuentes OH-IR son ejemplos de estrellas “capullo “.

Estrella con baja velocidad:

Estrella cuya velocidad relativa a las estrellas de la vecindad solar es pequeña, y que, por tanto, se haya en una órbita similar a la de estas alrededor del centro galáctico.

 

 

Estrellas Binarias de baja velocidad

 

Estrella con envoltura:

 

 

Eta Carinae es una estrella con envoltura de muchas masas solares a punto de… ¡convertirse en Supernova! Lo evita eyectando material al espacio interestelar, toda vez que presionada por su propia radiación está siempre en dificultad y en el límite de explotar. Así puede durar siglos, o, por el contrario, explosionar mañana mismo.

Estrella cuyo espectro (normalmente de tipo B) contiene prominentes líneas de absorción que se originan en una capa de material que rodea a la estrella. Si es variable, la estrella se clasifica como una estrella Gamma Cassiopeiae , en la que la eyección de una envoltura está acompañada por una disminución del brillo temporal.

 

Las estrellas de densas masas, a veces producen extraños sucesos como el de formar burbujas mientras que ellas quedan presumidas y brillantes en su centro para lucir todo su poderío.

Estrella con exceso de ultravioleta:

 

Estrella que presenta un exceso de radiación ultravioleta en comparación con las estrellas normales. Un exceso de ultravioleta puede ser utilizado para identificar estrellas O y B calientes, enanas blancas y objetos rodeados por un disco de acreción, como estrellas de neutrones y agujeros negros.

Estrella de alta velocidad:

Estrella que se mueve a más de 65 km/s en relación al movimiento promedio de otras estrellas en la vecindad del sol (el estándar local de reposo). Las estrellas de alta velocidad son miembros del halo galáctico, moviéndose en órbitas altamente elípticas alrededor del centro galáctico.

Sus altas velocidades relativas tienen su origen en el hecho de que están atravesando el disco galáctico y no comparten la rotación del sol y de sus otras estrellas vecinas alrededor del centro galáctico. Dichas estrellas pudieron haberse formado en las etapas tempranas de la historia de la Galaxia, o pueden ser los restos de galaxias menores que se han fusionado a la nuestra.

Estrella de baja luminosidad:

Término vago que puede comprender a las enanas rojas, las subenanas, las enanas blancas y las enanas marrones. La dificultad en detectar estrellas de baja luminosidad hace que el número total de ellas sea incierto. No obstante, pueden constituir una fracción significativa de la masa total de la Galaxia.

Estrella de baja masa:

Término vago, que en algunas ocasiones incluye a las estrellas con masas ligeramente mayores que la del Sol, y en otras es utilizado sólo para las estrellas de menos de unas pocas décimas de masas solares, aunque todavía con suficiente masa como para quemar hidrógeno en sus núcleos (es decir, al menos 0,08 masas solares). La primera definición distingue a las estrellas con núcleos radiactivos de las estrellas de masas mayores con núcleos convectivos; la segunda restringe el término a las enanas rojas.

Estrella de bario:

Estrella gigante roja de tipo espectral G o K en la que aparecen en el espectro elementos más pesados como el bario con una abundancia inusualmente alta; conocida también como estrella B ll o estrella de metales pesados. El helio que se quema en una capa alrededor del núcleo produce los elementos más pesados. Las estrellas de bario son similares a las *estrellas CH, si bien son más ricas en metales y no tienen suficiente carbono como para ser consideradas * estrellas de carbono.

Estrella de bariones:

Estrella compuesta principalmente por bariones. En la práctica el término es un sinónimo de estrella de neutrones, ya que la repulsión eléctrica de los protones rompería una estrella de protones pura.

Estrella de campo:

Estrella que es visible en el mismo campo de visión que un cúmulo de estrellas, aunque no pertenece al mismo, estando o bien más próxima a nosotros o más distante. Análogamente, una galaxia de campo se encuentra en la misma línea de visión que un grupo de galaxias aunque no es un miembro del mismo.

Estrella de carbono:

 

 

Estrella gigante roja fría en una etapa avanzada de su evolución, mostrando intensos rasgos característicos del carbono en forma de bandas de CN, CH y C2 en su espectro; también conocida como estrella de tipo espectral C. En las estrellas de carbono, la abundancia de carbono es mayor que la de oxígeno. La presencia adicional de litio indica que estos elementos han sido producidos mediante reacciones nucleares en el núcleo de la estrella y que están siendo ahora transportados por convección hacia su superficie.

 

 

http://bitacoradegalileo.files.wordpress.com/2011/03/hinds-crimson-star.jpg

 

 

R Leporis es una estrella variable, de Carbono. Descubierta en 1.845 por el astrónomo inglés John Russell Hind, va oscilando desde la magnitud 5.5 hasta 11.7, en periodos constantes de 427.07 días, o sea, unos 14 meses. Se trata de una estrella de carbono, tipo espectral C6II, de un marcado color rojo conocida como la estrella carmesí de Hind, en honor a su descubridor, quien al observarla desde elocular de su telescopio, la comparó a una gota de sangre.

Dado que el carbono sólo puede ser producido por el proceso triple-alfa a temperaturas muy altas, estas estrellas deben de estar muy evolucionadas. Estos raros pero luminosos objetos incluyen a las antiguas tipos R (gigantes de tipo K con temperaturas de 4000-5000 K) y N (gigantes de tipo M aunque más frías, con unos 3000K), que fueron introducidos en la clasificación de Harvard. Las estrellas de carbono de tipo N pueden ser hasta 10 veces más luminosas que las de tipo R.

 

Estrella de circonio: V. estrella S.

Proto estrella:

 

 

Una proto-estrella (o sea, una estrella en fase bebé) que lanza grandes cantidades de hidrógeno y oxígeno desde sus polos fue descubierta por los astrónomos recientemente. La estrella está a unos 750 años luz de la Tierra, y cada lanzamiento de estos gases, que son los que componen el agua, equivale a 100 millones de veces la que hay en el río Amazonas.

Este tipo de expulsiones han sido observadas antes en otras estrellas en formación, lo que hace pensar a los astrónomos que todas las estrellas pasan por este proceso. Los lanzamientos de hidrógeno y oxígeno en la estrella provocan grandes ondas alrededor de la misma, y el fenómeno podría ser el responsable de la existencia de agua en el universo

Estrella de estroncio:

Estrellas ultra-rápidas

Forma de estrella Ap con líneas de estroncio más intensas de lo habitual en su espectro. Estrellas viejas con niveles extrañamente altos de elementos raros como el estroncio y el itrio.

 

Estrella de helio:

Núcleo de una estrella que fue masiva (con más de 12 masas solares originalmente) y que ha evolucionado y perdido su envoltura rica en hidrógeno. La pérdida del hidrógeno puede ocurrir bien por medio de un intenso viento estelar, como en las estrellas Wolf-Rayet, o bien por transferencia de masa a un compañero, siempre que este se encuentre cerca de la primaria.

Se espera que las estrellas de helio evolucionen de la misma manera que los núcleos de las estrellas masivas, produciendo un núcleo de hierro que colapsa para generar una explosión de supernova de tipo Ib o Ic, dependiendo de la masa de la estrella.” Estrella de helio “es también un término obsoleto para referirse a una estrella d tipo B normal.

 

Estrella de la población I extrema:

Estrella que pertenece a la población estelar más joven. Como una estrella T Tauri, una estrella recién llegada a la secuencia principal de edad cero, o una estrella OB masiva con su región H II asociada. Dichas estrellas tienen altas abundancias de metales (similares a las del Sol o mayores).

Se encuentran en regiones localizadas del disco galáctico, notablemente en los brazos espirales, donde la formación de estrellas ha tenido lugar muy recientemente.

 

Estrella de la población intermedia:

Estrella con propiedades intermedias entre las viejas de la Población II del halo galáctico y las jóvenes de la Población I del disco galáctico. Su abundancia en metales pesados es intermedia entre la de las dos poblaciones, y se encuentran distribuidas en un grueso disco que se extiende por encima y por debajo de un fino disco en el que se encuentran las estrellas de la población del disco.

 

 

 

Una estrella que tenga una masa cercana a las 100 masas solares está en peligro y le puede ocurrir como a la que, arriba en la imagen podemos ver, será destruida por su propia radiación y, ni la fuerza de Gravedad puede mantenerla estable.

 

Gigante roja como Betelgeuse

 

Estrella de la rama gigante asintótica:

 

Este NO! es otro post de Estrellas en el Universo

 

 

Estrella que ocupa una franja en el diagrama de Hertzsprung-Russell que es casi paralela a, o justo por encima de, la rama de las gigantes. Las estrellas evolucionan desde la rama horizontal a la rama gigante asintótica cuando han agotado el helio en su núcleo y lo están quemando en una capa alrededor de este.

Los investigadores han observado un centenar de esos cuerpos celestes ricos en rubidio, conocidos como estrellas de la rama asintótica  gigantes. La variedad de estrellas (en sus componentes)m existentes en el Universo es inmensa. Incluso las tenemos que son auténticas diamantes.

Estrella de litio:

Estrella gigante inusual de tipo espectral G, K o M que presenta litio en su espectro. Las reacciones nucleares en o cerca del núcleo de la estrella evolucionada producen berilio, que es transportado por convección a las capas superiores, donde captura un electrón para convertise en litio.

El término es en ocasiones aplicado para referirse a las estrellas T Tauri (que son muy jóvenes y todavía en formación); en estos casos el litio es probable que se hallara en el gas del cual se formó la estrella, y será pronto destruido una vez que la estrella alcance la secuencia principal.

 

Estrella de manganeso:

 

Estrella químicamente peculiar con una proporción inusualmente alta de manganeso con respecto de hierro y una temperatura correspondiente al tipo espectral B tardío. Son estrellas de la secuencia principal, similares a las estrellas Ap, aunque sin evidencias de campos magnéticos intensos.

 

Estrellas múltiples:

 

 

Estrella múltiple, grupo de más de dos estrellas unidas entre sí por gravitación mutua de modo que cada una se mueve en una órbita alrededor de la otra. Los sistemas de estrellas múltiples de tres o cuatro estrellas parecen ser tan comunes como los sistemas binarios de estrellas, que son los pares de estrellas forzados a girar uno alrededor del otro por gravitación. Los astrónomos estiman que más o menos la mitad de todas las estrellas del cielo pertenecen bien a un sistema binario, bien a uno múltiple.

Estrella de mercurio-manganeso:

Forma de estrella de manganeso que tiene una línea espectral a una longitud de onda de 398,4 nm, identificada como de hidrógeno ionizado; también conocida como estrella de manganeso-mercurio.

 

Estrella de metales pesados:

 

 

http://dc168.4shared.com/download/166565067/464c2eea/10_Betelgeuse__58_Alpha_Orioni.jpg

 

 

Gigante con cantidades inusuales de elementos pesados en su espectro, como las estrellas de bario o las estrellas S.

 

Estrella de neutrones:

 

 

Estrella masiva que al final de sus días se contrae en estrella de neutrones. Son objeto extremadamente pequeño y denso que se cree que se forma cuando una estrella masiva sufre una explosión de supernova de tipo II. Durante la explosión el núcleo de la estrella masiva se colapsa bajo su propia gravedad hasta que, a una densidad de unos 10 con exponente 17 k/m3, los electrones y los protones están tan juntos, que pueden combinarse para formar neutrones.

El objeto resultante, consistente sólo en neutrones, se soporta frente a un mayor colapso gravitacional por la presión de degeneración de los neutrones, siempre que su masa no sea mayor que unas dos masas solares (límite de Oppenheimer-Volkoff).

Si el objeto fuese más masivo colapsaría hasta formar un agujero negro. Una típica estrella de neutrones, con una masa poco mayor que la del Sol, tendría un diámetro de apenas 30 km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humanidad.

Cuanto mayor es la masa de una estrella de neutrones, menor es su diámetro. Se cree que las estrellas de neutrones tienen un interior de neutrones superfluitos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeados por una corteza sólida de más o menos un kilómetro de grosor compuesta de elementos como el hierro.

Los pulsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensa que contienen estrellas de neutrones.

 

Estrella de quarks: (Hipotética)

 

 

 

Estrella hipotética con una densidad intermedia entre la de una estrella de neutrones y la de un agujero negro. Dichas estrellas estarían constituidas por quarks libres. Las fuerzas entre los quarks compensan las fuerzas gravitacionales. Es improbable que las estrellas de quarks existan en la naturaleza, pero algunos modelos de núcleos de estrellas de neutrones sugieren que los neutrones (y los protones) dejan de ser estados ligados para formar un caldo de quarks.

 

Estrella de referencia:

Estrella cuya posición y -o movimiento propio son conocidos, de manera que puede ser utilizada para definir un sistema de referencia local para las posiciones relativas o los movimientos propios de otras estrellas situadas en la misma área del cielo.

Estrella de silicio: Tipo de estrella Ap en la que hay una abundancia de silicio mayor de la normal.

 

Estrella Supermasiva:

 

 

 

Un peculiar Horizonte de Sucesos en el Centro de una Galaxia

 

La estrella supermasiva cuando se convierte en un agujero negro se contrae tanto que, realmente desaparece de la vista, de ahí su nombre de “agujeros negros”.  Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape supera a la de la luz, por tal motivo, ni la luz puede escapar de él.  En la singularidad, dejan de existir el tiempo y el espacio, podríamos decir que el agujero negro está fuera, apartado de nuestro Universo, pero en realidad, deja sentir sus efectos, ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como Horizonte de Sucesos.

Estrella de tecnecio:

Estrella M o estrella de carbono que contiene isótopos de tecnecio. Dado que el isótopo de tecnecio de más larga vivaque puede ser creado por la nucleosíntesis estelar tiene una vida media de 210.000 años, este material debió de haberse creado recientemente en el interior de la estrella y más tarde llevado hacia su superficie.

 

Estrella de tipo intermedio: Término empleado en ocasiones para referirse a las estrellas con tipos espectrales F o G.

Estrella de tipo tardío:

Estrella con una temperatura superficial más fría que la del Sol, con un tipo espectral K, M, C o S; a menudo, también se incluyen las estrellas G en esta categoría. Las estrellas de tipo tardío pueden ser o bien de baja masa, si son de la secuencia principal, o más masivas que el Sol, si son gigantes o supergigantes. La designación “tardío “proviene de la época en la que se pensaba incorrectamente que las estrellas con espectros K o M eran viejas y evolucionadas.

 

Estrella de tipo temprano:

 

Cualquier estrella masiva y caliente de tipo espectral O, B o A. La designación “temprano” deriva de una antigua idea errónea de que las estrellas evolucionaban desde un estado caliente y joven a un estado frío y viejo. El término también se utiliza para referirse al tipo más caliente de cada clase espectral; por ejemplo, una estrella K1 es más temprana que una estrella K5.

 

Estrella del polo:

 

 

 

La estrella visible a simple vista más próxima a los polos celestes Norte y Sur. La estrella del polo norte es en la actualidad Polaris, y la estrella del polo Sur es Sigma Octantis. No obstante, la posición del polo celeste (y, por tanto, a estrella del polo) cambia con el tiempo debido al efecto de la precesión.

 

Estrella doble:

 

 

 

Dos estrellas que aparecen próximas entre sí en el cielo. Dichos pares pueden dividirse en dos clases:

 

Dobles ópticas, donde las componentes no están gravitacionalmente ligadas, y dobles físicas, en las que las estrellas se hayan orbitando en torno a un baricentro común. El término “estrella doble” está restringido frecuentemente al primer grupo, mientras que el término estrella binaria es empleado para el segundo. De hecho, las dobles ópticas son relativamente poco comunes, y la mayoría de las dobles son realmente auténticos sistemas binarios

Me gustaria haber hecho este viaje más completo y con más imágenes de estrellas que representaran a cada una de las clases que en las galaxias existen, sin embargo, diversas circuntancias me impiden llevarlo a la práctica. De todas las maneras y, como una muestra de la riqueza que existe en la familia estelar, creo que está bien para comprender que, el inmenso Universo, siempre nos sorprenderá con su contenido y las maravillas que en él están presentes.

 

emilio silvera.

Estamos señalados por muchos dones pero…¡El habla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (27)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No solo pintaban en las paredes rocosas de sus grutas, sino que también, de manera rústica emitían sonidos guturales que, más tarde dueron palabras que les llevó a entenderse entre ellos de manera natural para expresar sus pensamientos y hacer la convivencia más natural.

En tiempos, circuló una tesis por ahí que, en la actualidad es casi creacionista porque niega el proceso evolutivo. Dice que el lenguaje, en este caso concreto la palabra hablada, apareció de pronto entre los humanos hace entre 35.000 y 50.000 años, más o menos como un big bang de la especiación. según algunos, la capacidad de expresar la palabra y de utilizar sintaxis se implantó genéticamente en nuestros cerebros en fecha relativamente reciente, en una especie de órgano del lenguaje. Esta concepción del lenguaje está relacionada con la antigua idea de que el pensamiento lógico o racional depende en cierto modo de las palabras. La idea procede de Platón y estuco muy en boga en el siglo XIX entre algunos autores, como Jacob Grimm (“Los animales no hablan porque no piensan”) y Max Muller (“El lenguaje es nuestro Rubicón y ningún animal se atreverá cruzarlo”) y “Sin lenguaje no hay razón y sin razón no hay lenguaje”).

NO, no fue ninguna especie de big bang de la especiación. El habla, amigos míos, nos llegó en algún momento de nuestra evolución, no de repente ni por arte de magia, sino que, tras un largo período de entrenamiento se fueron modulando las palabras que finalmente conformaría un lenguaje entendible que dio lugar a la necesaria comunicación entre los seres humanos. Ninguna luz luminosa nos llegó desde los cielos para dotarnos de ese preciado don que es el habla.

La idea creacionista del gran salto adelante en la calidad del pensamiento humano se refleja muy bien en una interpretación habitual del arte europeo del Paleolítico Superior…

http://rokeraemopija15.files.wordpress.com/2010/02/1760107_288da1c2a8_m1.jpg

Según este punto de vista, pinturas rupestres europeas y figurillas talladas con más de 30.000 años de antigüedad son barruntos del pensamiento simbólico y abstracto y también del lenguaje. Sin embargo, la madura perfección de las pinturas más antiguas de la cueva de Chauvet, en el sur de Francia, parece desmentior esta  teoría. En cualuqier caso, esta interpretación eurocéntrica pasa por alto el hecho de que los australianos, en la otra punta del planeta, conocían la pintura rupestre en la misma época que los primeros europeos. Hay muchas pruebas y razones, para suponer, que un común antepasado africano dominaba ya las técnicas del habla, la pintura y la representación simbólica mucho antes de que salieran de África, hace 80.000 años.

Otro problema de la teoría creacionista, o del “big bang”, sobre la unicidad de las facultades humanas modernas es que hay indicios de que los neandertales tenían ya la misma anatomía vocal especializada que nosotros y, es más, según todos los datos y estudios, el antepasado común de los neandertales y nuestro, el Homo heidelbergensis, hablaba ya hace medio millón de años. Así lo revelan las configuraciones anatómicas en fósiles profundamente estudiados.

La especulación anatómica nos devuelve qa los primeros humanos y a la espectacular aceleración del crecimiento encefálico experimentada por los géneros Homo y Paranthropus. Si alguna vez existió un “big bang” en la especiación de los homínidos inteligentes se debió producir entonces.

Tim Crow, profesor de psiquiatría en Oxford, ha aducido que se pueden identificar dos importantes acontecimientos especiadores con dos mutaciones estrechamente relacionadas del cromosoma. , producidas después de separarnos de los chimpancés. Hay motivos para suponer que una de estas mutaciones, o las dos, están relacionadas con la asimetría cerebral y posiblemente con el lenguaje. Si es así, podríamos imaginar que la primera mutación se produjo en el antepasado común a Homo y a Paranthropus, y la segunda en Homo eructus, dado que éste acusa los primeros indicios de asimetría cerebral.

La investigación neurofisiológica moderna, sirviéndose de un abanico de técnicas de imágenes activas de la actividad cerebral, ha contribuido a erosionar la concepción biológica y determinista del pensamiento y de la evolución y adquisición del lenguaje. Sabemos ya que la sintasis de cada idioma se procesa en diferentes zonas cerebrales. La sintasis no se implanta: la infieren los niños, que en copmparación con los adultos que aprenden un nuevo idioma, tienen más capacidad y versatilidad para descodificar asociaciones simbólicas y adivinar la verdadera inferencia sintáctica.

Claro que, los humanos no somos los únicos que tenemos un período crítico en el desarrollo en el que se adquieren las técnicas lingüisticas. Se ha podido observar el mismo fenómeno en “cantores” no primates, como los pájaros y las ballenas. Las complejas canciones, a menudo únicas, que cantan estos animales cuando son adultos se han aprendido, modificado y grabado en una etapa temprana. Además, las investigaciones demuestran que el habla no está forzosamente limitada a una zona o zonas concretas del cerebro.

Mucho nos queda por aprender de algunas especies que conviven con nosotros aquí en la Tierra y de las que, no sabemios nada o muy poco. Nadie sabe traducir los significados de esos cantos y sonidos que, entre ellos, se entrecruzan y, desde luego…¿quién podría negar que en “sus idiomas” entablan conversaciones?

En resumen, podríamos decir que, entre todas las facultades mentales y prácticas que los filósofos han aducido para señalar las diferencias cualitativas entre los humanos modernos y y los chimpancés, la única que sigue en pie es el lenguaje humano. Es evidente, hay una gran diferencia cuantitativa en lo que se refiere a la capacidad intelectual, pero el intelecto humano no brotó de pronto hace 35.000 años, en el Paleolítico Superior europeo: Ya venía evolucionando desde hace cuatro millones de años. Durante los dos últimos millones los humanos han mejorado el modelo del simio andante sirviéndose del cerebro, pero es posible que en este empeño les ayudara la coevolución del tamaño encefálico, impulsada por el lenguaje.

No tomeis a pie juntillas esa imagen de arriba que es indicadora de un equívoco muy común, partimos del mono y llegamos por evolución mutativa a ser humanos. Nada más incierto: Ambos, el Chimpancé y el humano, tuvieron un antepasado común del que divergieron un día, y, ese antepasado, no era ni Homo ni Pan.

emilio silvera

Fuente: Los Senderos del Eden de Stephen Oppenheimer

Universo, siempre el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                                            Hablemos de cuerpos, de paisajes, de la Tierra

Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta. En segundo lugar considerare los demás cuerpos y objetos del universo. El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos. Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la química), consideró como el último término a que se llega mediante la aplicación del análisis químico.

Hoy sabemos que son colectividades de átomos isotópicos. La mayoría de ellos son sólidos y se encuentran en la naturaleza (nuestro entorno terráqueo) en estado libre o en combinación química con otros elementos, formando los diversos minerales. Los minerales son sustancias sólidas,naturales, con una composición química especíufica. Las rocas son agregados naturales constituidos por uno o más minerales.

 

Una gran diversidad de minerales

Las propiedades caracteristicas de los minerales ayudan a identificarlos:

 

 

  • Forma:pirita, cristales.

  • Color: azufre, malaquita, galega.

  • Brillo: metálico, vítreo, sedoso, mate.

 

La ordenación de los iones en las redes se manifiesta externamente en multitud de formas y colores. No obstante debo señalar que, aun siendo abundante esta variedad, no es tan rica como la que corresponde a los cuerpos vivos, tanto animales como vegetales. La explicación se basa en que el número de especímenes moleculares y su complejidad son mucho mayores que en el reino inorgánico.

Sería conveniente, salir al paso de una posible interpretación errónea.  Me refiero a que pudiera pensarse que los reinos que acabamos de mencionar constituyen clases disyuntas, esto es, sin conexión mutua. Y no lo digo porque esté considerando el hecho de que el carbono forma compuestos inorgánicos y orgánicos (lo que también hace el silicio), sino porque haya existido, y aún pueda existir, una conclusión, mejor conexión evolutiva del mundo inorgánico y el viviente que no se puede descartar, de hecho yo particularmente estoy seguro de ello. Estamos totalmente conectados con los ríos, las montañas y los valles, con la tierra que pisamos, el aire que respiramos y con todo el resto del universo del que formamos parte.

Leer más