viernes, 26 de noviembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Misterios de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencias de la Tierra    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Encuentros espaciales

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas –, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Existen simulaciones de lo que puede ser el choque del meteorito en la Tierra y, desde luego, no quisiera estar aquí cuando suceda. La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

Entre Marte y Júpiter hay cientos de miles de cuerpos pequeños que orbitan alrededor del Sol llamados asteroides. También podemoas encontrarlos más allá de Plutón, llamado cinturón de Kuiper, y que en este caso reciben el nombre de objetos transneptunianos y que están hecho de hielo. Ceres es el asteroide más grande y tiene 913 km de diámetro.

 

Leer más

Incertidumbre, Orden, Caos, Entropía…Vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Entropía    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

Moléculas, átomos y conexiones para formar pensamientos

 

Imaginemos una mente inteligente que, en todo momento, pudiera tener conocimiento de todas las fuerzas que controlan la Naturaleza y también, de las condiciones en que se encuentran en cada momento todas las unidades de que consta ésta. Si esta mente tuviera una inteligencia suficiente para analizar todos estos datos, podría abarcar en una sola fórmula los movimientos de los cuerpos de mayor tamaño del universo y los de los átomos más ligeros; para ella nada sería incierto; el futuro y el pasado estarían ambos presentes ante sus ojos.

El equivalente moderno de esta mente sería un superordenador que conociera todas las posiciones y las velocidades de todas las partículas del universo, y pudiera utilizar las leyes de Newton y las que describen las fuerzas de la naturaleza (como la gravedad y el electromagnetismo), no solo para predecir la trayectoria futura de cada partícula, sino para averiguar toda la historia de su procedencia –porque en las leyes de Newton no hay nada que nos revele la dirección del tiempo y funcionan de la misma manera si éste transcurre en sentido contrario, como podemos ver fácilmente si nos imaginamos el proceso inverso del choque entre dos bolas de billar, o si invertimos el movimiento orbital de todos los planetas del Sistema Solar-.

No hay una flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no hay lugar para el libre albedrío.

Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas –aunque la valoración de si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a la filosofía.

    El tiempo y la entropía destructora

 

En la física del movimiento y sus causas -Dinámica- las leyes de la naturaleza funcionan tanto si el tiempo transcurre “hacia adelante” como también si lo hiciera “hacia atrás”, es decir que son simétricas y reversibles en el tiempo. Si filmamos un choque entre dos partículas, o la órbita de un planeta entorno a su sol, y pasamos la película al revés, notaremos que las trayectorias están invertidas, lo cual es totalmente coherente para la física: no hay nada que nos indique que el tiempo está trascurriendo en sentido contrario. Si las leyes de la naturaleza no distinguen entre el pasado y el futuro, entonces ¿por qué notamos que el tiempo fluye en un sentido y no en otro? ¿De dónde sale esa asimetría del tiempo? ¿Por qué recordamos el pasado pero no el futuro?

Este mismo problema relativo al tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell (1831-1879). La explicación dada por Maxwell sobre la radiación electromagnética se basa en la obra de Michael Faraday, que vivió entre 1791 y 1867, y propuso la definición de los “campos” eléctrico y magnético que surgen en torno a los objetos que poseen una carga eléctrica.

Fue Faraday el primero en sugerir que la luz podría estar producida por algún tipo de vibración de las líneas de fuerza asociadas con imágenes y partículas “cargadas”, que vibrarían como lo hacen las cuerdas de un violín al ser pulsadas. El problema estaba en que, Faraday, carecía de los conocimientos matemáticos necesarios para desarrollar la idea de maneta tal que se desarrollara un modelo perfectamente configurado. Así, en la década de 1860, llegó Maxwell para rematar el trabajo de Faraday con sus maravillosas ecuaciones vectoriales para demostrar que todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluido el comportamiento de la luz, podía ser descrito mediante un conjunto de sólo cuatro ecuaciones, que actualmente se denominan ecuaciones de Maxwell.

                                            Statue of J. Clerk Maxwell

 

Newton y Maxwell, dieron al mundo el conjunto de herramientas matemáticas necesarias para controlar todo lo que la física conocía a mediados del siglo XIX. Por otra parte, lo más maravilloso de las ecuaciones de Maxwell era que, sin que se hubiera pedido, proporcionaban una descripción de la luz –las ecuaciones se crearon para describir otros fenómenos electromagnéticos, pero incluían en sí misma una solución que describía las ondas electromagnéticas que se desplazaban por el espacio a cierta velocidad- Esta velocidad es exactamente la de la luz (que ya había quedado bien determinada en la década de 1860 y pronto podría medirse con una precisión aún mayor), no dejando lugar a dudas de que la luz se desplaza como una onda electromagnética.

Las ecuaciones de Maxwell tienen dos características curiosas: una de ellas pronto tendría un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera característica innovadora de estas ecuaciones es que dan la velocidad de la luz como un valor constante, independientemente de cómo se mueva su fuente con respecto a la persona o al aparato que mida su velocidad (Einstein lo supo ver con claridad cuando lo incorporó a su teoría de la relatividad especial).

La Flecha del Tiempo en el Universo…siempre hacia el futuro


Claro que, como todo, también las ecuaciones de Maxwell tenían sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muy pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las descripciones electromagnéticas (Maxwell), como la descripción clásica de las interacciones entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Así, las ecuaciones de Maxwell, como las de Newton, tampoco contienen la flecha del tiempo.

Lo que fue durante mucho tiempo la explicación habitual la razón por la que vemos una dirección predominante del tiempo surgió a partir de otro gran triunfo de la física del siglo XIX: la descripción de la relación entre calor y movimiento (termodinámica). Esto tuvo una importancia práctica fundamental en el mundo industrial cuando se utilizaba la fuerza de las máquinas de vapor.

Lo cierto es que, la importancia de la termodinámica reside en que permite a los físicos explicar el comportamiento de gran número de objetos –en especial, partículas de gas- que, en cierto sentido, funcionan juntos en un sistema complejo. Esto incluye el uso de promedios y estadísticas, pero se basa en gran medida en la idea de que un gas está constituido por una cantidad innumerable de partículas diminutas (átomos y moléculas) que no cesan de rebotar y chocar entre sí y con las paredes del recipiente que las contiene, cumpliendo las leyes del movimiento de Newton. Esta teoría cinética de los gases fue un ejemplo importante del modo en que las leyes universales de la física ponían orden en el caos.

Ludwing Boltzmann (1844-1906)
       Ludwig Boltzmann (1844-1906)

La palabra “gas” fue acuñada por el físico flamenco Joannes van Helmont a partir de la palabra griega que significa “caos”; este término apareció impreso por primera vez en el libro de van Helmont titulado Ortus medicinae, publicado cuatro años después del fallecimiento de Joannes, en 1648. La idea de que los gases eran como un caos se consideró acertada durante trescientos años, hasta que Maxwell desde Gran Bretaña, y su contemporáneo Ludwig Boltzmann, desde Viena, consolidaron la teoría cinética (que hasta entonces había sido sólo una especulación), dándole una firme base científica fundamentada en las leyes de Newton.

Lo que actualmente se conoce como segundo principio de la termodinámica se puede expresar de muchas formas diferentes, pero su primer enunciado se debe al físico británico William Thomson (quien fuera posteriormente lord Kelvin) en 1852. La cuestión principal sobre la que Thomson llamó la atención era la idea de la disipación –que, aunque el modo en que funciona el mundo natural se puede describir como un gran motor que convierte el calor en trabajo (o en movimiento, que viene a ser lo mismo), debe haber siempre algo de calor que se disipa durante el proceso, aunque realmente no se pierde, sino que se propaga por todo el universo, haciendo que la temperatura global suba una pizca, una cantidad imperceptible-Esto va más allá del principio, o ley, de la conservación de la energía (el primer principio de la termodinámica), porque en este caso, aunque la cantidad total de energía del mundo (expresión con la que los victorianos se referían a lo que actualmente llamaríamos el universo) se mantiene siempre igual, la cantidad de energía útil siempre está disminuyendo. Esto implica que los físicos necesitaban un método para cuantificar la cantidad de energía útil existente en un sistema cerrado, o en el mundo (el universo en toda su amplitud), de tal manera que pudiera tenerla en cuenta y manejarla en sus ecuaciones. Esto indujo a Rudolf Clausius a proponer el concepto de entropía, lo cual hizo en Alemania a mediados de la década de 1860.

La entropía mide la cantidad de orden que hay en un sistema y, si el desorden aumenta, también lo hace la entropía. Sabiendo que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan) a medida que pasa el tiempo, el inevitable aumento de la entropía define una dirección del tiempo, una flecha que parte del pasado ordenado y apunta hacia el futuro desordenado. Dado que este proceso parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del universo.

La vida, por supuesto, parece desafiar este proceso creando orden y estructuras a partir de materiales desordenados (o, en todo caso, menos desordenados). No parece más que, el Universo, actúa como si tuviera una consciencia y, hubiera creado la vida para que, a través de ella, pudiera evitar ese final. Una planta, por ejemplo, construye su estructura, y puede fabricar flores de gran belleza, a partir del dióxido de carbono, agua y unos pocos restos de otros productos químicos. Pero sólo puede hacerlo con la ayuda de la luz solar, es decir, con energía procedente de una fuente externa. La Tierra, y en particular la vida que se desarrolla en ella, no es un sistema cerrado. Es posible demostrar, utilizando las ecuaciones desarrolladas por Thomson, Clausius y sus contemporáneos, que, en cualquier lugar del Universo donde aparece un foco de orden, esto se hace a costa de que se produzca más desorden en otro lugar.

A escala macroscópica, según unas leyes deducidas a partir de experimentos y observación siguiendo procedimientos científicos aprobados, ensayados y comprobados, el universo actúa de un modo irreversible. Nunca se puede hacer que las cosas vuelvan a ser como solían, todo lo que surge, aunque nos parezca igual, no lo es. Todo lo nuevo que surge a partir de lo que había, está más evolucionado y, de alguna manera, es diferente. Pero precisamente en nuestro sencillo y clásico ejemplo de irreversibilidad termodinámica, la entropía y la flecha del tiempo podemos observar con claridad la dicotomía aparente entre el mundo macroscópico y el mundo microscópico. A nivel de los átomos y las moléculas que componen el gas (en realidad un nivel sub-microscópico, pero nadie lo tiene en cuenta), toda colisión es, según las leyes de Newton, perfectamente reversible y, en ese modelo del movimiento inverso no habría nada que estuviera prohibido por las leyes de Newton. Obedeciendo ciegamente esas leyes, los átomos y las moléculas recorrerían su camino inverso para volver a quedarse en su posición original, con independencia del número de sucesos e interacciones que pudieran haber sufrido durante el proceso. Sin embargo, en el mundo real, nunca vemos que los sistemas actúen de esa manera. Las civilizaciones pasan y llegan otras nuevas, aquellas que se fueron, nunca volverán. De la misma manera, cuando una estrella, al final de su vida, explota como supernova y deja sembrado el espacio interestelar de una hermosa Nebulosa de la que, mucho más tarde, surgirán nuevas estrellas, éstas, serán de otra generación, más complejas y, aunque seguirán siendo estrellas, estarán clasificadas como diferentes, más complejas y evolucionadas que aquellas en las que tienen su origen.

Me proponía al comenzar este trabajo a exponer muchas más cosas pero, como siempre pasa, el espacio y el tiempo no dan para tanto en este lugar y, dejo pendiente explicar cómo surge el Caos a partir del Orden y el Orden a partir del Caos, cómo podemos llegar al borde del Caos y qué transiciones de fase tienen que producirse para que, la normalidad y la simetría vuelva a reinar a partir de ese desorden que, en un principio, podría parecer irreversible.

De todo lo que aquí hemos hablado, se puede tomar razón y llegar a tener una razonada conciencia en el estudio de una galaxia espiral que, con sus millones de estrellas brillantes en los brazos espirales y sus estrellas rojas y más viejas en el centro galáctico, nos hablan claramente de la flecha del tiempo y de la entropía al considerar, la galaxia, como el sistema cerrado que, poco a poco, va tornándose más y más compleja en la composición de la materia que la conforma que, de manera irreversible va sufriendo transformaciones de todo tipo que, finalmente, la llevará a un estado crítico que hasta se podría transformar en un inmenso agujero negro como resultado final del proceso.

Mucho es lo que nos queda por saber, lo que sabemos, reconociendo que no es poco para el exiguo tiempo que llevamos aquí (en la medida del reloj del universo), es aún insuficiente para lo que la Humanidad necesita saber. Nuestra ignorancia es grande, muy grande…, casi infinita, si la contraponemos con todo aquellos que nos queda por descubrir de los secretos de la Naturaleza. Nunca podremos acabar ese aprendizaje que se pierde en la lejanía de la flecha del tiempo en ese infinito que llamamos futuro.

emilio silvera

Cosas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

Si la teoría del Bing Bang es correcta (como parece que lo es -al menos de momento-), debe de existir alguna fuerza desconocida, quizá la misma gravedad que no hemos llegado a entender totalmente y tenga alguna parte que se nos escapa, o,  una gran proporción de “materia cósmica” en forma no bariónica, quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia cósmica que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.700 millones de años que es la edad del universo. (Fijáos en la noticia que se publica hoy aquí mismo).

 http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia cósmica perdida”.

 

                                            Viaje hacia la Quinta Dimensión

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia cósmica -otros la llamanoscura- (si finalmente existe), está situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío” donde residen inmensas energías que rasgan el espacio-tiempo y que, de alguna manera, deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea. También podría tener tal anomalía su fuente en algún universo paralelo (en otro trabajo de hoy aparece la misma idea) que, de alguna manera, nos transmita interacciones gravitatorias, o, también podría darse el caso de que…

Claro que mis pensamientos son eso, una conjetura más de las muchas que circulan. A veces me sorprendo al escuchar como algunos astrofísicos de reconocido nombre, sin pudor alguno, dogmatizan hablando de estas cuestiones sobre las que no tienen la menor certeza. Podemos hablar de la energía y materia oscura pero, siempre, dejando claro que son teorías de lo que podría ser y que, más o menos probables, aún no han sido confirmadas.

De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia. ¿Cómo poemos poner nombre a algo que ni sabemos si existe en realidad. Se buscó esta solución para poder cuadrar las cuentas. Las observaciones astronómicas dejaron claro que, las galaxias, se alejaban las unas de las otras a velocidades cada vez mayores y que, de seguir así, llegaría un día en el futuro en el que, las únicas galaxias cercanas serían las del Grupo Local. Que cada vez el espacio “vacío” entre galaxias será mayor. ¿Qué fuerza desconocida empujaba a las galaxias a expandirse hacia el exterior? La materia bariónica no era la causante. Así que, se inventí la materia oscura y, de esa manera, el problema quedó zanjado. Claro que, no solucionado.

 

Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas pero, la materia oscura, al sernos desconocida, no sabemos como puede ser y no podemos tener una imagen de lo que la materia oscura es (si es que es), así que hablamos y hablamos de ella sin cesar pero también sin, saber.

Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta, o, nos sacará del error, al demostrar que la dichosa materia oscura, nunca existió y que es, otra fuerza, la que produce los efectos observados en la expansión acelerada del Universo.

Claro que nos falta mucho…

 

Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado instantáneo de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones de tiempo para que, algunos de estos sueños se haga realidad y, si ocurren algunas de esas cosas en el futuro…¿La haremos nosotros? ¿O, quizá para entonces sean otros los que habrán cogido la antorcha de nuestros sueños?

                      ¿Alguien me podría decir quién es robot y quién humano?

Cada vez se avanza más en menos tiempo. Y, llegará el momento, cuando dentro de algunos milenios, estemos preparados para viajar a las estrellas que, estarán aquí presentes con nosotros los inevitables Robots. Según una serie de cálculos y profundos pensamientos, no podremos seguir adelante llegados a un punto de no retorno, y, nos veremos obligados a fabricar robots muy sofisticados que harán trabajos espaciales y de colonización de Planetas para preparar la posterior llegada de los Humanos. Es inevitable pero, ¿será una buena idea?

Acordaos de que hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados. De la misma manera pero mucho más acelerada, serán las décadas venideras y, para dentro de los próximos cien años (a finales del presente siglo), si lo pudiéramos ver, quedaríamos tan asombrados como lo estarían nuestros bisabuelos si pudieran abrir los ojos y ver el mundo actual.

¿Qué maravillas tendremos dentro de 200 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Sabremos más sobre el origen de la vida? ¿Qué estadio de saber habrá alcanzado la Fisica, y, si para entonces hemos verificado la Teoría de cuerdas, qué nuevas teorías estarán en boga? ¿Habremos convertido Marte en una segunda Tierra (terraformarla) al proporcionarle una atmósfera y un escudo magnético?

 

        La verdad es que, científicamente hablando, no habría problema alguno

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias. La Relatividad General de Einstein, nos dice cómo la materia determina la geometría del Universo.

 

Un universo que se curva sobre sí mismo en presencia de la materia

Einstein nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espaciotiempo. Es decir, Einstein nos dijo que la materia, es la que determina la geometría del Universo.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste.

Al espacio le ocurre igual.

De la misma manera se puede considerar que el espacio tridimensional dentro y alrededor de un agujero negro está distorsionado dentro de un espacio plano de dimensión más alta (a menudo llamado hiperespacio), igual que la lámina bidimensional está distorsionada como describo en la imagen anterior.

Lo más intrigante de los agujeros negros es que, si caemos en uno, no tendremos manera alguna de salir o enviar señales a los que están fuera esperándonos. Pensemos que la masa de la Tierra que es de 5’974X1024 Kg  (densidad de 5’52 gramos por cm3), requiere una velocidad de escape de 11’18 Km/s, ¿cuál no será la masa y densidad de un agujero negro si pensamos que ni la luz que viaja a 299.792’458 Km/s puede escapar de su fuerza de gravedad?

La galaxia

     La Gravedad, presente en el Universo ¡de tantas maneras!

Es tanta la densidad que no sólo distorsiona el espacio, sino que también distorsiona el tiempo según las ecuaciones de Einstein: el flujo del tiempo se frena cerca del agujero, y en un punto de no retorno (llamado el “horizonte” del agujero, o límite), el tiempo está tan fuertemente distorsionado que empieza a fluir en una dirección que normalmente sería espacial; el flujo de tiempo futuro está dirigido hacia el centro del agujero. Nada  puede moverse hacia atrás en el tiempo1, insisten las ecuaciones de Einstein; de modo que  una vez dentro del agujero, nos veremos arrastrados irremisiblemente hacia abajo con el flujo del tiempo, hacia una “singularidad” escondida en el corazón del agujero; en ese lugar de energía y densidad infinitas, el tiempo y el espacio dejan de existir.

Como he apuntado antes en alguna parte de este mismo trabajo, la descripción relativista del agujero negro procede de la obra de Kart Schwarzschil. En 1.916, apenas unos meses después de que Einstein formulara sus famosas ecuaciones, Schwarzschild fue capaz de resolver exactamente las ecuaciones de Einstein y calcular el campo gravitatorio de una estrella masiva estacionaria.

Así, Históricamente la primera solución importante fue obtenida por Schwarzschild en 1916, esta solución conocida posteriormente como métrica de Schwarzschild, representa el campo creado por un astro estático y con simetría esférica. Dicha solución constituye una muy buena aproximación al campo gravitatorio dentro del sistema solar, lo cual permitió someter a confirmación experimental la teoría general de la relatividad explicándose hechos previamente no explicados como el avance del perihelio de Mercurio y prediciendo nuevos hechos más tarde observados como la deflexión de los rayos de luz de un campo gravitatorio. Además las peculiaridades de esta solución condujeron al descubrimiento teórico de la posibilidad de los agujeros negros, y se abrió todo una nueva área de la cosmología relacionada con ellos. Lamentablemente el estudio del colapso gravitatorio y los agujeros negros condujo a la predicción de las singularidades espacio-temporales,  deficiencia que revela que la teoría de la relatividad general es incompleta. Quizá la teoría de cuerdas, en la que subyace ésta, nos complete el cuadro.

La solución de Schwarzschild tiene varias características interesantes:

La solución de Schwarzschild permitió aplicar los postulados de la relatividad general a disciplinas como la mecánica celeste y la astrofísica, lo cual supuso una verdadera revolución en el estudio de la cosmología: Apenas seis años después de la publicación de los trabajos de Einstein, el físico ruso Aleksander Fridman introdujo el concepto de singularidad espacio-temporal, definido como un punto del espacio-tiempo en el que confluyen todas las geodésicas de las partículas que habían atravesado el horizonte de sucesos de un agujero negro. En condiciones normales, la curvatura producida por la masa de los cuerpos y las partículas es compensada por la temperatura o la presión del fluido y por fuerzas de tipo electromagnético, cuyo estudio es objeto de la física de fluidos y del estado sólido. Sin embargo, cuando la materia alcanza cierta densidad, la presión de las moléculas no es capaz de compensar la intensa atracción gravitatoria. La curvatura del espacio-tiempo y la contracción del fluido aumentan cada vez a mayor velocidad: el final lógico de este proceso es el surgimiento de una singularidad, un punto del espacio-tiempo donde la curvatura y la densidad de tetramomentum son infinitas.

  • En primer lugar, una línea de no retorno rodea al agujero negro: cualquier objeto que se acerque a una distancia menor que este radio será absorbido inevitablemente en el agujero.
  • En segundo lugar, cualquiera que cayera dentro del radio de Schwarzschild será consciente de un “universo especular”  al “otro lado” del espacio-tiempo.

 

 

 

Incluso surgieron agujeros de gusano que nos podían trasladar a puntos distantes tanto en el tiempo como en el espacio.

Einstein no se preocupaba por la existencia de este extraño universo especular porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya dije antes, ni la luz podría escapar a dicha fuerza, e igualmente, las ondas de radio electromagnéticas también estarían prisioneras en el interior de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. Además, para penetrar en el universo alternativo, la sonda debería ir más rápida que la velocidad de la luz, lo que no es posible; c es la velocidad límite del universo.

Así pues, aunque este universo especular es matemáticamente necesario para dar sentido a la solución de Schwarzschild, nunca podría ser observado físicamente (al menos por el momento). En consecuencia, el famoso puente de Einstein-Rosen que conecta estos dos universos fue considerado un artificio matemático.

Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

Las cosas comenzaron a cambiar con la solución que el trabajo matemático presentado por el neozelandés Roy Kerr, presentado en 1.963, encontró otra solución exacta de las ecuaciones de Einstein. Kerr supuso que cualquier estrella colapsante estaría en rotación. Así pues, la solución estacionaria de Schwarzschild para un agujero negro no era la solución físicamente más relevante de las ecuaciones de Einstein.

La solución de Kerr causó sensación en el campo de la relatividad cuando fue propuesta. El astrofísico Subrahmanyan Chandrasekhar llegó a decir:

La  experiencia que ha dejado más huella en mi vida científica, de más de cuarenta años, fue cuando comprendí que una solución exacta de las ecuaciones de Einstein de la relatividad general, descubierta por el matemático Roy Kerr, proporciona la representación absolutamente exacta de innumerables agujeros negros masivos que pueblan el universo. Este estremecimiento ante lo bello, este hecho increíble de que un descubrimiento motivado por una búsqueda de la belleza en matemáticas encontrará su réplica exacta en la naturaleza, es lo que me lleva a decir que la belleza es aquello a lo que lleva la mente humana en su nivel más profundo“.

Un agujero negro de Kerr o agujero negro en rotación es una región de agujero negro presente en el espacio-tiempo de Kerr, cuando el objeto másico tiene un radio inferior a cierta magnitud, por encima de este radio el universo de Kerr no presenta región de agujero negro. Un agujero negro de Kerr es una región no isótropa que queda delimitada por un horizonte de sucesos y una ergoesfera presentando notables diferencias con respecto al agujero negro de Schwarzschild. Esta nueva frontera describe una región donde la luz aun puede escapar pero cuyo giro induce altas energías en los fotones que la cruzan. Debido a la conservación del momento angular, este espacio forma un elipsoide, en cuyo interior se encuentra un solo horizonte de sucesos con su respectiva singularidad, que debido a la rotación tiene forma de anillo.

La solución de Kerr de un agujero negro giratorio permite que una nave espacial pase a través del centro del agujero por el eje de rotación y sobrevivir al viaje a pesar de los enormes pero finitos campos gravitorios en el centro, y seguir derecha hacia el otro universo especular sin ser destruida por la curvatura infinita.

Para nosotros, teniendo el concepto que tenemos de lo que un agujero negro es, es tan difícil imaginar que una nave pueda entrar en él y poder salir más tarde, como imaginar que, en mundos extraños como el de arriba, puedan existir criaturas inteligentes como en la Tierra.

El universo, como todos sabemos, abarca a todo lo que existe, incluyendo el espacio y el tiempo y, por supuesto, toda la materia está en la forma que esté constituida. El estudio del universo se conoce como cosmología. Si cuando escribimos Universo nos referimos al conjunto de todo, al cosmos en su conjunto, lo escribimos con mayúscula, el universo referido a un modelo matemático de alguna teoría física, ese se escribe con minúscula.

El universo real está constituido en su mayoría por espacios aparentemente vacíos, existiendo materia concentrada en galaxias formadas por estrellas y gas (también planetas, quásares, púlsares, cometas, estrellas enanas blancas y marrones, estrella de neutrones, agujeros negros y otros muchos objetos espaciales). El universo se esta expandiendo, las galaxias se alejan continuamente los unas de las otras. Existe una evidencia creciente de que existe una materia oscura invisible, no bariónica, que puede constituir muchas veces la masa total de las galaxias visibles. El concepto más creíble del origen del universo es la teoría del Big Bang de acuerdo con la cual el universo se creó a partir de una singularidad infinita de energía y densidad a inmensas temperaturas de millones de grados K, hace ahora unos 15.000 millones de años.

emilio silvera